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Preface

This volume, in the ITECH Vision Systems series of books, reports recent advances in the 
use of pattern recognition techniques for computer and robot vision. The sciences of pattern 
recognition and computational vision have been inextricably intertwined since their early 
days, some four decades ago with the emergence of fast digital computing. All computer vi-
sion techniques could be regarded as a form of pattern recognition, in the broadest sense of 
the term. Conversely, if one looks through the contents of a typical international pattern rec-
ognition conference proceedings, it appears that the large majority (perhaps 70-80%) of all 
pattern recognition papers are concerned with the analysis of images. In particular, these 
sciences overlap in areas of low-level vision such as segmentation, edge detection and other 
kinds of feature extraction and region identification, which are the focus of this book. 
Those who were research students in the 1980s may recall struggling to find enough exam-
ple images in digital form with which to work. In contrast, since the 1990s there has been an 
explosive increase in the capture, storage and transmission of digital images. This growth is 
continuing apace, with the proliferation of cheap (even disposable) digital cameras, large 
scale efforts to digitally scan the world’s written texts, increasing use of imaging in medi-
cine, increasing use of visual surveillance systems and the display and transmission of im-
ages over the internet. 
This growth is driving an acute demand for techniques for automatically managing and ex-
ploiting this vast resource of data. Intelligent machinery is needed which can search, recog-
nize, sort and interpret the contents of images. Additionally, vision systems offer the poten-
tial to be the most powerful sensory inputs to robotic devices and are thus set to 
revolutionize industrial automation, surgery and other medical interventions, the security 
and military sectors, exploration of our oceans and outer space, transportation and many 
aspects of our daily lives. Computational intelligence, of which intelligent imaging is a cen-
tral part, is also driving and driven by our inner search to understand the workings of the 
human brain, through the emerging interdisciplinary field of computational neuroscience. 
Not surprisingly, there is now a large worldwide community of researchers who publish a 
huge number of new discoveries and techniques each year. There are several excellent texts 
on vision and pattern recognition available to the reader. However, while these classic texts 
serve as fine introductions and references to the core mathematical ideas, they cannot hope 
to keep pace with the vast and diverse outpouring of new research papers. In contrast, this 
volume is intended to gather together the most recent advances in many aspects of visual 
pattern recognition, from all over the world. An exceptionally international and interdisci-
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plinary collection of authors have come together to write these book chapters. Some of these 
chapters provide detailed expositions of a specific technique and others provide a useful tu-
torial style overview of some emerging aspect of the field not normally covered in introduc-
tory texts. 
The book will be useful and stimulating to academic researchers and their students and also 
industrial vision engineers who need to keep abreast of research developments. This book 
also provides a particularly good way for experts in one aspect of the field to learn about 
advances made by their colleagues with different research interests. When browsing 
through this volume, insights into one’s own work are frequently found within a chapter 
from a different research area. Thus, one aim of this book is to help stimulate cross-
fertilization between the multiplying and increasingly disparate branches of the sciences of 
computer vision and pattern recognition. 
I wish to thank the many authors and editors who have volunteered their time and material 
to make this book possible. On this basis, Advanced Robotic Systems International has been 
able to make this book entirely available to the community as open access. As well as being 
available on library shelves, any of these chapters can be downloaded free of charge by any 
researcher, anywhere in the world. We believe that immediate, world-wide, barrier-free, 
open access to the full text of research articles is in the best interests of the scientific commu-
nity. 

Editor

Rustam Stolkin 
Stevens Institute of Technology 

USA
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Real-Time Object Segmentation of the Disparity 
Map Using Projection-Based Region Merging 

Dongil Han
Vision and Image Processing Lab. 

 Sejong University 98 Kunja-dong, Kwagjin-gu, Seoul
Korea

1. Introduction 

Robots have been mostly used in industrial environment, but modern developments of 
household robot-cleaner suggest the necessity of household robots as becoming in reality. 
Most industrial robots have been used for factory automation that perform simple and 
iterative tasks at high speed, whereas household robots need various interfaces with a man 
while moving in indoor environment like a household robot-cleaner does. 
Robots activate in indoor environment using various sensors such as vision, laser, ultrasonic 
sensor, or voice sensor to detect indoor circumstance. Especially robot’s routing plan and 
collision avoidance need three-dimensional information of robot’s surrounding 
environment.  This can be obtained by using a stereo vision camera which provides a 
general and huge amount of 3-D information.  But this computation is too big to solve in 
real-time with the existing microprocessor when using a stereo vision camera for capturing 
3-D image information. 
High-level computer vision tasks, such as robot navigation and collision avoidance, require 
3-D depth information of the surrounding environment at video rate. Current general-
purpose microprocessors are too slow to perform stereo vision at video rate. For example, it 
takes several seconds to execute a medium-sized stereo vision algorithm for a single pair of 
images using one 1 GHz general-purpose microprocessor. 
To overcome this limitation, designers in the last decade have built reprogrammable chips 
called FPGA(Field-Programmable Gate Arrays) hardware systems to accelerate the 
performance of the vision systems. These devices consist of programmable logic gates and 
routing which can be re-configured to implement practically any hardware function. 
Hardware implementations allow one to apply the parallelism that is common in image 
processing and vision algorithms, and to build systems to perform specific calculations 
quickly compared to software implementations. 
A number of methods of finding depth information in video-rate have been reported. 
Among others, multi-baseline stereo theory is developed and the video-rate stereo machine 
has the capability of generating a dense depth map of 256x240 pixels at the frame rate of 30 
frames/sec in [1-2]. An algorithm proposed from parallel relaxation algorithm for disparity 
computation [3] results reduction of error rate and enhancement of computational complexity 
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of problems. Also, an algorithm proposed from depth discontinuities by pixel-to pixel stereo [4] 
is concentrated on the calculation speed and rapidly changing disparity map. It is not 
possible to search for the exact depth of the discontinuities when there is no change in 
lightness of boundary. Also the high-accuracy stereo technique [5] mentioned the difficulty 
of drawing sharp line between intricate occlusion situations and some highly-slanted 
surfaces (cylinder etc.), complex surface shapes and textureless shapes. Nevertheless, for 
algorithm suggested in this chapter, we can use the post-processing as first half of process to 
get more neat disparity map produced by other many stereo matching algorithms, which 
can be used for the object segmentation. 
To embody object segmentation, we used hardware-oriented technology which reduces 
tasks of the software, contrary to conventional software-oriented method. Also, it has great 
effectiveness that reduces software processing time by the help of real-time region data 
support, which containing various kinds of object information, that reduces total area of 
search process such as object or face recognition. Use of embedded software based on low-
cost embedded processor, compare to use of high-tech processor, to conduct tasks of object 
recognition, object tracking, etc in real-time provides a suggestion of a household robot 
application.  
This chapter is organized as follows: Section 2 describes a brief review of proposed 
algorithm. Section 3 explains refinement block while Section 4 explains segmentation. At the 
conclusion, the experimental results including results of depth computation and labeling are 
discussed in Section. 5 

2. Algorithm Overview 

In this chapter, we attempted to make clearer object segmentation using projection-based 
region merging of disparity map produced by applied trellis-based parallel stereo matching 
algorithm described in [6]. Throughout this experiment, we verified the performance. 
Necessity of post-processing algorithm application for many different characterized stereo 
matching has been ascertained through various experiment performed in this chapter. 

Figure 1. Block diagram of the post processing algorithm 

The block diagram of the proposed post-processing algorithm is shown in figure 1. The 
post-processing algorithm is progressed in three big stages. The first stage is the refinement 
block, which carries normalization referenced from filtering and disparity max value, and 
elimination of noise using histogram consecutively. In second stage, the depth computation 
which helps to find out the distance between camera and original objects on disparity map 
and the image segmentation which takes responsibility of object partition are accomplished 
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in a row. Finally in the last stage, information of object existed in original image is gathered 
and integrated with all information proposed in second stage. 
The cause of noise in disparity map can be textureless object, background video, or 
occlusion etc. In stereo matching algorithm, possibility of textureless object and occluded 
area must be necessarily considered, but even through consideration has been applied, 
precise result may not be processed. Therefore, refinement stage like filtering must be 
included on the first half of post-processing to be able to segment the object with much more 
clear disparity map. 

3. Refinement 

In this stage, we try to obtain purified disparity map by the utilization of disparity 
calibration algorithm which used for mode filtering of disparity map out of trellis-based 
parallel stereo matching algorithm, with the normalization, and disparity calibration. 

3.1 Mode filtering  

The noise removal techniques in image and video include several kinds of linear and 
nonlinear filtering techniques. Through out the experiment, we adopted the mode filter 
technique for preserving boundary of image and effective removal of noise. The window 
size used for filtering has been fixed to 7x7, considering the complexity and performance of 
hardware when it is implemented. The numerical equation used for mode filtering is as 
follow:
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In equation (1) and (2), the value of k represents the window size. In this chapter, 7x7=49 is 
used. From equation (2), with given disparity map input xi , and only changing the 
argument of pixel value j in the 7x7 window, we can calculate the difference between two 
pixel values. When Dij value is 0 in equation (1), we increase the Ci value by one. If we can 
find the largest value of Ci, then the mode value Xm can be decided. If all the values of xi are 
different, we can not find the maximum value of Ci. In this case, we select and decide on the 
center value of window, xcenter(window size 7x7 has been used in this chapter, thus x24

should be utilized). 
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3.2 Normalization 

After the mode filtering, noise removed disparity map can be obtained. Then by using the 
disparity max value used for getting the stereo matching image, the disparity values of 
mode filtered image are mapped out new normalized values with regular and discrete 
intervals.
The disparity max value can be decided in the stereo matching stage, which is the value to 
decide the maximum displacement of matching pixels which can be calculated from the left 
image to right image. In normalization stage, disparity map pixels, composed of 0~255 
gradation values, is divided into 0~disparity max range (in barn1 image, disparity max 
value is 32). This process removes unnecessary disparity map. The value of 0~disparity max 
range is again multiplied to the pixel values calculated before, and finally restored to 0~255 
gradation values. 

3.3 Disparity Calibration 

In disparity calibration stage, which is the final stage of refinement, the normalized 
disparity value is accumulated to form a histogram of each frame. During accumulation 
process, we ignore the disparity value under the given threshold value to remove the noise 
in dark area. 

(a) Barn1 image

(b) Tsukuba image 

Figure 2. The result of disparity calibration (left: stereo matching result, middle: histogram 
comparison, right: calibrated disparity map)

And in this histogram, the data under the predetermined frequency level can also be 
considered as noise. Thus, after the formation of the histogram, the accumulated pixel data 
are sorted out according to the frequency. The upper part of the histogram which consists of 
approximately 90% of total histogram area holds their pixel values. About the pixel 
frequency which does not reach the given specific threshold, the nearest value is selected 
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among the accumulated pixel values which belong to the upper part of the sorted 
histogram. The center part of figure 2 (a) and (b) shows the histogram data before and after 
the disparity calibration. And the right part of figure 2 (a) and (b) shows the tsukuba and 
barn1 image after the disparity calibration stage. 

4. Segmentation 

The objective of this block is to separate objects from the disparity map and to partition 
slanted objects to other objects. In this chapter, to achieve the objectives, we conducted the 
horizontal and vertical projection for each level of disparity map and sequential region 
merging with projection results. 

4.1   Projection  

The task to separate object from the distance information is completed by processing 
horizontal and vertical projection of each disparity map. The results of specific projections 
are shown in figure 3. 
Using the horizontal and vertical projection for each disparity level, the region data for all 
level of disparity map could be obtained, and the horizontal position information of a region 
data is expressed by starting and ending point of vertical direction projection Px(n)=(Xs(n),
Xe(n)), while the vertical position information of a region data is expressed by starting and 
ending point of horizontal direction projection Py(n)=((n), Ye(n)). Also a region data is 
represented as R(n)=(Px(n), Py(n)).

(a) Second level    (b) Third level 

 Figure 3. The projection examples about each disparity level 

4.2   Region Merge  

Whether to merge the region or not can be decided after all of the region information about 
each depth level is obtained. In the case of flat or slanted object, which produce wide range 
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of distances from camera, the objects need to be recognized as one object. Therefore, regular 
rule is necessary to be applied on the merging algorithm. 
In this chapter, the merging algorithm is such that the two region of depth level is 
overlapped and its difference of depth level is just one level, merging the regional 
information of two depth level. And this procedure is conducted until there are no 
remaining depth levels to merging. The above description is summarized as follows:   
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The r value in equation (4) represents the number of all separated region in each disparity 
depth level, and n in equation (4)~(6) is the level of disparity map. Px(n), Py(n), R(n) in 
equation (4) represents the obtained region data in projection block. 
When the adjacent two regions are overlap each other, we regard two regions as one object, 
and merge two regional information by using the equation (5). The final region merging rule 
is described in equation (6). 

Figure 4. Disparity map after region merging (barn1 image)

Figure 4 shows disparity map after the region merging process. When considering the 
implementation of hardware, the result of this chapter shows the possibility of easy 
hardware implementation. 

5   Experimental Results 

5.1 Experimental environment 

In this chapter, we proved the validity of proposed algorithm with C-language level 
implementation. And, after that, we implemented the proposed algorithms with VHDL 
level and we were able to get result of hardware simulation using Modelsim. Finally, the 
proposed post-processing algorithm is implemented in FPGA. We used 320x240 resolution 
and frame rates of 60 fps, 1/3” CMOS stereo camera, and the full logic is tested with Xilinx 
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Virtex-4 Series XC4VLX200. Figure 5 shows experimental environment. The stereo camera 
takes images to embedded system and the display monitor shows processed result in real-
time. Control PC is linked to embedded system and to hub to conduct control task.  

Figure 5. Experimental environment 

5.2 stereo matching post processing FPGA logic simulation 

Figure 6 shows the result of VHDL simulation to activate stereo matching post processing
(SMPP) module. When Vactive sync is in high region, it takes 320x240-sized stereo image 
and shows it on the screen after post processing in real time. Also the control pc in Figure 5 
can choose an object to be shown. Table 1 explains signals used in simulation established 
with FPGA. 

Figure 6. The result of  VHDL simulation to activate SMPP module 
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Vactive_sm2po_n Input vactive signal of SMPP 
Hactive_sm2po_n Input hactive signal of SMPP 
Dispar_sm2po Input disparity map signal of SMPP 
Max_sel Input register for selecting gray value about object 
Dispar_max Input register about Maximum disparity 
Image_sel Input register for selecting image 
Label_sel Input register for selecting label order 
Total_pxl_se2re Input register about total pixel number of threshold of histogram 
Background_sm2po Input register about background value 
Remove_pxl_sm2po Input register about noise threshold of histogram 
Heighte_lb2dp_info Output register about Height end point of segment object 
Vactive_po2ds_n Output vactive signal of SMPP 
Hactive_po2ds_n Output hactive signal of SMPP 
Dispar_po2ds` Output Disparity map signal of SMPP 
CLK Active clock of FPGA 
RESET Active reset of FPGA 

Table. 1. Simulation signal

5.3 Result 

This chapter examined the algorithms using various images within stereo matching 
database for first step and secured its validity. As shown in figure 4, we obtained perfect 
result with barn1 image. We performed another experiment using tsukuba image and proved 
that the equal result can be gained. Also, in the result of applying post-processing algorithm 
in several other stereo images, we are able to obtain similar image as figure 4. 

     

Figure 7. Disparity map after region merging (tsukuba image) (left: C simulation result, 
right: VHDL simulation result) 

The proposed post-processing algorithm is also implemented in fixed-point C and VHDL 
code. The C and VHDL code test result about the tsukuba image is shown in figure 7 and we 
obtained same results. This result is passed onto labeling stage, with the depth information 
of camera extracted from depth calculation block. Synthesizing region information and 
depth information of segmented object is processed in labeling stage. Figure 8 shows the 
final labeling result of tsukuba and barn1 images obtained from VHDL simulation. Figure 9 
shows the BMP (Bad Map Percentage) and PSNR test results with barn1, barn2 and tsukuba 
images. 
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Figure 8. Labeling results (left: barn1 image, right: tsukuba image) 

(a) BMP test results   (b) PSNR test results  

Figure 9. Image quality comparison with intermediate result images 

We have designed unified FPGA board module for stereo camera interface, stereo matching, 
stereo matching post processing, host interface and display. And we also implemented 
embedded system software by constructing necessary device driver with MX21 350MHz 
microprocessor environment. Table 2 shows the logic gates of proposed SMPP module 
when retargeting FPGA. Figure 10 ~13 show real time captured images of stereo camera 
input and the results of SMPP modules using control pc. 
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Virtex4

Available

Unified

module 

SM  

module 

SMPP 
module

Number of Slice Flip Flops 
178,176 38,658 11,583 17,369

Number of 4 input LUTs 
178,176 71,442 25,124 40,957

Number of occupied Slices 89,088 55,531 19,917 29,507

Table 2. The logic gates for implementing the FPGA board 

(a) Left camera input 

(b) Right camera input 

(c) Stereo matching result 

(d) Nearest object segment result  

Figure 10. Real-time test example 1  
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(a) Left camera input 

(b) Right camera input 

(c) Stereo matching result 

(d) Nearest object segment result  

Figure 11. Real-time test example 2 
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(a) Left camera input 

(b) Right camera input 

(c) Stereo matching result 

(d) Nearest object segment result  

Figure 12. Real-time test example 3 
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(a) Left camera input 

(b) Right camera input 

(c) Stereo matching result 

(d) Nearest object segment result  

Figure 13. Real-time test example 4 
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Figure 14 shows control application program operated on control pc. This application 
program communicates to board and hub to calibrate camera and to modify registry of each 
modules. Also it can capture images on the screen which can be useful for debug jobs. 
Figure 15 shows image collecting stereo camera. Figure 16 shows implemented embedded 
system and unified FPGA board module. 

Figure 14. The control applications operated on control pc 
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Figure 15. The stereo camera. 

Figure 16. Embedded System and unified FPGA board module 
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5.4 Software application 

A household robot has to perform actions like obstacle avoidance or human recognition 
activity. One of systems used widely can recognize human by extracting possible human-
like areas among those with motions within the screen. However, the system can have 
performance drops when human doesn’t move or the robot moves.  
The algorithm suggested in this chapter extracts human shapes on depth map using stereo 
matching to get relative distances between camera and other objects in real-time, as it also 
can separate each area in real-time, which keeps performance regardless of human’s or 
robot’s motions mentioned above. 

A. Application to human recognition 
The followings are description of the human recognition method using results of our study. 

Step. 1. Extract edge of screen in 80x60 size from the labeled image (Fig 
17.(a),320x240).

Step. 2. Recognize /A pattern (Fig. 17. (c)) among extracted edges. 
Step. 3. Determine possibility of human exist considering face size (a,b), height of face 

(c), width of shoulders, distances, or etc with edges of /A pattern. 

   
(a) Labeled image                       (b) Extracted edges

(c) /A type pattern 

Figure 17. Example of human recognition with software application 
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B. Application to face recognition 
 Figure 18 shows an application of our study to face recognition issue. Figure 18 (a) is an 
input image, and (b) is an area of object segmentation produced by the algorithm suggested 
in this chapter. Figure 18 (c) is an overlapped image that has an advantage of faster 
processing speed by focusing target area to possible human position using segmentation 
information , compare to total search for face recognition. 

     (a) Input image                     (b) Labeling image                      

(c) Overlap image 

Figure 18. Application to face recognition 

6. Conclusion 

If we can get more accurate result than the conventional stereo vision system, performance 
of object recognition and collision avoidance will be improved in robot vision applications. 
So, we used the process of stereo matching algorithm with post processing in this chapter.  
The problems such as lack of texture and existence of occlusion area must be carefully 
considered in matching algorithm and accurate dividing objects must be processed. Also 
post processing module is necessary as removal of remaining noise. Thus, this chapter 
developed stereo matching post process algorithm that is able to provide distance between 
robot and the object regarding trellis-based parallel stereo matching result and to provide 
the object’s area data in real time and examined it by real time FPGA test. 
The developed stereo matching post process algorithm is considering possibility of 
hardware implementation and implemented it using C-algorithm for first step. Then we 
examined it with various images registered in stereo matching database to secure validity. 
Also we have developed VHDL and on-boarded it to unified FPGA board module to 
examine various real time tests using stereo camera on various indoor environments for 
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second step. As the result of many experiments, we were able to confirm quality 
improvement of stereo matching images. 
To embody object segmentation, we used hardware-oriented technology which reduces 
tasks of the software. Also, it has great effectiveness that reduces software processing time 
by the help of real-time region data support, which containing size and distance information 
of various kinds of objects, that reduces total area of search process for face or object 
recognition. Use of embedded software based on low-cost embedded processor to conduct 
tasks of object recognition, object tracking, etc in real-time provides a suggestion of a 
household robot application. 
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A Novel Omnidirectional Stereo Vision System 

via a Single Camera1

Chuanjiang Luo, Liancheng Su & Feng Zhu 
Shenyang Institute of Automation, Chinese Academy of Sciences 

P.R. China 

1. Introduction 

Obtaining panoramic 3D map information for mobile robots is essential for navigation and 
action planning. Although there are other ways to fulfill this task, such as ultrasonic sensors 
or laser range finders, stereo vision system excels them in its precision and real-time speed 
without energy emission.
But the conventional stereo vision systems are limited in their fields of view (FOV). An 
effective way to enhance FOV is to construct an omnidirectional vision system using mirrors 
in conjunction with perspective cameras. These systems are normally referred to as 
catadioptric and have been applied to robot localization and navigation by several 
researchers (Bunschoten & Krose, 2002; Menegatti et al., 2004). A common constraint upon 
the omnidirectional sensors modeling requires that all the imaged rays pass through a 
unique point called single viewpoint (SVP) (Baker & Nayar, 1999).  The reason a single 
viewpoint is so desirable is that it is a requirement for the generation of pure perspective 
images from the sensed images. These perspective images can subsequently be processed 
using the vast array of techniques developed in the field of computer vision that assume 
perspective projection. The mirrors popularly used to construct wide FOV catadioptric are 
hyperbolic or parabolic. But the latter must be coupled with expensive telecentric optics 
which restricts them to limited applications in panoramic vision.  
Mobile robot navigation using binocular omnidirectional stereo vision has been reported in 
(Menegatti et al., 2004; Yagi, 2002; Zhu, 2001). Such two-camera stereo systems can be 
classified as horizontal stereo systems and vertical stereo systems according to their 
cameras’ configuration. In (Ma, 2003), the cameras are configured horizontally and the 
baseline of triangulation is in the horizontal plane. This configuration brings two problems: 
one is that the epiploar line becomes curved line leading to increasing computational cost; 
the other is that the accuracy of the 3D measurement depends on the direction of a 
landmark. In the omnidirectional stereo vision system (Gluckman et al., 1998; Koyasu et al., 
2002; Koyasu et al., 2003), two omnidirectional cameras are vertically arranged. Such 
configuration escapes the shortcomings brought by horizontal stereo system, but the power 
cable and data bus introduce occlusion to the images captured by this configuration. In 
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addition, two-camera stereo systems are costly and complicated besides having the problem 
of requiring precise positioning of the cameras. 
Single camera stereo has several advantages over two-camera stereo. Because only a single 
camera and digitizer are used, system parameters such as spectral response, gain, and offset 
are identical for the stereo pair. In addition, only a single set of intrinsic parameters needs to 
be determined. The prominent advantage of single camera stereo over two-camera 
configuration is that it does not need data synchronization.  Omnidirectional stereo based 
on a double lobed mirror and a single camera was developed in (Southwell et al., 1996; 
Conroy & Moore, 1999; Cabral et al., 2004). A double lobed mirror is a coaxial mirror pair, 
where the centers of both mirrors are collinear with the camera axis, and the mirrors have a 
profile radially symmetric around this axis. This arrangement has the advantage to produce 
two panoramic views of the scene in a single image. But the disadvantage of this method is 
the relatively small baseline it provides. Since the two mirrors are so close together, the 
effective baseline for stereo calculation is quite small.  

         
a)                                                               b) 

Figure 1. a) The appearance of the stereo vision system. b) The configuration of the system 

To overcome this drawback, we have proposed a novel large baseline panoramic vision 
system in this chapter. We will describe in detail how to use this vision system to obtain 
reliable 3D depth maps of surrounding environment. In the subsequent arrangement of this 
chapter, Section 2 is dedicated to describe the principle of our catadioptric stereo vision 
system. Following that, a full model of calibrating the system including the rotation and 
translation between the camera and mirrors is presented in Section 3. In Section 4, a three-
step method that combines the merit of feature matching and dense global matching is 
proposed to get a fast and reliable matching result and eventually the 3D depth map. 
Finally, we will give a brief evaluation of our system and some ideas for our future work in 
the summary. 



A Novel Omnidirectional Stereo Vision  System via a Single Camera 21

2. Principle of Our Vision System 

The system we have developed (Su & Zhu, 2005) is based on a common perspective camera 
coupled with two hyperbolic mirrors, which are separately fixed inside a glass cylinder 
(Fig.1a). The two hyperbolic mirrors share one focus which coincides with the camera 
center. A hole in the below mirror permits imaging via the mirror above. As the separation 
between the two mirrors provides much enlarged baseline, the precision of the system has 
been improved correspondingly. The coaxial configuration of the camera and the two 
hyperbolic mirrors makes the epipolar line radially collinear, thus making the system free of 
the search process for complex epiploar curve in stereo matching (Fig. 3). 
To describe the triangulation for computing 3D coordinates of space points, we define the 
focal point O  as the origin of our reference frame, z-axis parallel to the optical axis pointing 
above. Then mirrors can be represented as: 
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Only the incident rays pointing to the focus )2,0,0( aa cF , )2,0,0( bb cF  will be reflected by the 
mirrors to pass through the focal point of the camera. The incident ray passing the space 
point ),,( zyxP  reaches the mirrors at points aM  and bM , being projected onto the image at 
points ),,( fvuP aaa −  and ),,( fvuP bbb −  respectively. As aP  and bP  are known, aM  and bM
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Since point aM  and bM  are on the mirrors, they satisfy the equation of the mirrors. Their 
coordinates can be solved from equation group (1) and (2). Then the equation of rays PFa

and PFb  are: 
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We can finally figure out coordinate of the space point P  by solving the equation (3). 

3. System Calibration 

3.1 Overview

In using the omnidirectional stereo vision system, its calibration is important, as in the case 
of conventional stereo systems (Luong & Faugeras, 1996; Zhang & Faugeras, 1997). We 
present a full model of the imaging process, which includes the rotation and translation 
between the camera and mirror, and an algorithm to determine this relative position from 
observations of known points in a single image. 
There have been many works on the calibration of omnidirectional cameras. Some of them 
are for estimating intrinsic parameters (Ying & Hu, 2004; Geyer & Daniilidis, 1999; Geyer 
Daniilidis, 2000; Kang, 2000). In (Geyer & Daniilidis, 1999; Geyer Daniilidis, 2000), Geyer & 
Daniilidis presented a geometric method using two or more sets of parallel lines in one 
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image to determine the camera aspect ratio, a scale factor that is the product of the camera 
and mirror focal lengths, and the principal point. Kang (Kang, 2000) describes two methods. 
The first recovers the image center and mirror parabolic parameter from the image of the 
mirror’s circular boundary in one image; of course, this method requires that the mirror’s 
boundary be visible in the image. The second method uses minimization to recover skew in 
addition to Geyer’s parameters. In this method the image measurements are point 
correspondences in multiple image pairs. Miousik & Pajdla developed methods of 
calibrating both intrinsic and extrinsic parameters (Miousik & Pajdla, 2003a; Miousik & 
Pajdla, 2003b). In (Geyer & Daniilidis, 2003), Geyer & Daniilidis developed a method for 
rectifying omnidirectional image pairs, generating a rectified pair of normal perspective 
images. 
Because the advantages of single viewpoint cameras are only achieved if the mirror axis is 
aligned with the camera axis, these methods mentioned above all assume that these axes are 
parallel rather than determining the relative rotation between the mirror and camera. A 
more complete calibration procedure for a catadioptric camera which estimates the intrinsic 
camera parameters and the pose of the mirror related to the camera appeared at (Fabrizio et 
al., 2002), the author used the images of two known radius circles at two different planes in 
an omnidirectional camera structure to calibrate the intrinsic camera parameters and the 
camera pose with respect to the mirror. But this proposed technique cannot be easily 
generalized to all kinds of catadioptric sensors for it requires the two circles be visible on the 
mirror. Meanwhile, this technique calibrated the intrinsic parameters combined to extrinsic 
parameters, so there are eleven parameters (five intrinsic parameters and six extrinsic 
parameters) need to be determined. As the model of projection is nonlinear the computation 
of the system is so complex that the parameters cannot be determined with good precision. 
Our calibration is performed within a general minimization framework, and easily 
accommodates any combination of mirror and camera. For single viewpoint combinations, 
the advantages of the single viewpoint can be exploited only if the camera and mirror are 
assumed to be properly aligned. So for these combinations, the simpler single viewpoint 
projection model, rather than the full model described here, should be adopted only if the 
misalignment between the mirror and camera is sufficiently small. In this case, the 
calibration algorithm that we describe is useful as a software verification of the alignment 
accuracy. 
Our projection model and calibration algorithm separate the conventional camera intrinsics 
(e.g., focal length, principal point) from the relative position between the mirrors and the 
camera (i.e., the camera-to-mirrors coordinate transformation) to reduce computational 
complexity and improve the calibration precision. The conventional camera intrinsics can be 
determined using any existing method. For the experiments described here, we have used 
the method implemented in http://www.vision.caltech.edu/bouguetj/calib_doc/. Once the 
camera intrinsics are known, the camera-to-mirrors transformation can be determined by 
obtaining an image of calibration targets whose three-dimensional positions are known, and 
then minimizing the difference between coordinates of the targets and the locations 
calculated from the targets’ images through the projection model. Fig. 3 shows one example 
of calibration image used in our experiments. The locations of the three dimensional points 
have been surveyed with an accuracy of about one millimeter. If the inaccuracy of image 
point due to discrete distribution of pixels is taken into account, the total measuring error is 
about five millimeters. 
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3.2 Projection Model 

Fig. 2 depicts the full imaging model of a perspective camera with two hyperbolic mirrors. 
There are three essentially coordinate systems.  

                        
Figure 2. The projection model of the omnidirectional stereo vision system. There are 
transformations between the camera coordinate system and the mirror (or world) coordinate 
system 

1. The camera coordinate system centered at the camera center cO , the optical axis is 
aligned with the z-axis of the camera coordinate system;  

2. The mirror system centered at common foci of the hyperbolic mirrors oF , the 
mirrors axes is aligned with the z-axis of the mirror coordinate system (We assume 
that the axes of the mirrors are aligned well, and the common foci are coincident, 
from the mirrors manufacturing sheet we know it is reasonable); 

3. The world system centered at wO . The omnidirectional stereo vision system was 
placed on a plane desk. As both the base of vision system and desk surface are 
plane, the axis of the mirror is perpendicular to the base of the system and the 
surface of the desk feckly. We make the mirror system coincide with the world 
system to simplify the model and computations.  
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So the equations of hyperboloid of two sheets in the system centered at wO  are the same as 
equation (1). For a known world point ),,( www zyxP  in the world (or mirror) coordinate 
system whose projected points in the image plane are also known, ),( 111 vuq  and ),( 222 vuq
are respectively projected by the upper mirror and bellow mirror. Then we get their 
coordinates in the camera coordinate system: 
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Where f  is the focal length; uk and vk are the pixel scale factors; 0u and 0v are the 
coordinates of the principal point, where the optical axis intersects the projection plane. 
They are intrinsic parameters of the perspective camera. 
So the image points ( )c

i
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c
ic zyxP ,,  of the camera coordinate system can be expressed relative 

to the mirror coordinate system as: 
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Where R  is a 3×3 rotation matrix with three rotation angles around the x-axis (pitch α ), y-
axis (yaw β ) and z-axis (title χ ) of the mirror coordinate system respectively; ],,[ zyx tttt =

is the translation vector. So the origin T
cO ]0,0,0[= of the camera coordinate system can be 

expressed in the world coordinate system T
zyxm tttO ],,[= , so the equations of lines 1MOc

and 2MOc  which intersect with the upper mirror and bellow mirror respectively at points 

1M  and 2M , can be determined by solving simultaneous equations of the line 1MOc  or 

2MOc  and the hyperboloid. Once the coordinates of the point 1M  and 2M  have been 
worked out, we can write out the equations of the tangent plane 1 and 2 which passes the 
upper and the bellow mirror at point 1M  and 2M  respectively. Then the symmetric points 

1

cO  and 2

cO  of the origin of the camera coordinate system cO  relative to tangent plane 1
and 2 in the world coordinate system can be solved from the following simultaneous 
equations:
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Hitherto the incident ray 2

1MOc  and 1

2MOc  can be written out to determine the world point 
),,( www zyxP . Generally, the two lines are non-co-plane due to various parameter errors and 
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measuring errors, we solve out the midpoint ( )T
www zyxG ˆ,ˆ,ˆ= of the common perpendicular 

of the two lines by 
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From all of them above, we finally come to the total expression to figure out the world point 
( )T

www zyxG ˆ,ˆ,ˆ=  from two image points respectively projected by the upper mirror and 
bellow mirror and six camera pose parameters left to be determined. 
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Equation (8) is a very complex nonlinear equation with high power and six unknown 
parameters to determine. The artificial neural network trained with sets of image points of 
the calibration targets is used to estimate the camera-to-mirror transformation. 
Taking advantage of the ANN capability, which adjusts the initial input camera-to-mirror 
transformations step by step to minimize the error function, the real transformations 
parameters of the camera-to-mirror can be identified precisely. 

3.3 Error Function 

Considering the world points with known coordinates, placed onto a calibration pattern, at 
the same time, their coordinates can be calculated using the equation (8) from back-
projection of their image points. The difference between the positions of the real world 
coordinates and the calculated coordinates is the calibration error of the model. Minimizing 
the above error by means of an iterative algorithm such as Levenberg-Marquardt BP 
algorithm, the camera-to-mirror transformation is calibrated. The initial values for such 
algorithm are of consequence. In our system, we could assume the transformation between 
cameras and mirrors is quite small, as the calculation error without considering the camera-
to-mirror transformation is not significant thus using R=I and T=0 as the initial values is a 
reasonable choice. 
We minimize the following squared error 2:
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Where n is the number of the calibration points. 
Because ( )iiii

zyxi vuvutttG 2211 ,,,,,,,,, χβα  depends on the camera-to-mirror transformation, (9) is 
optimized with respect to the six camera-to-mirror parameters. 
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3.4 Calibration Result 

The calibration was performed using a set of 81 points equally distributed on a desk with 
different heights from 0 to 122mm around the vision system. 

Figure 3. A calibration image used in our experiments. The coaxial configuration of the 
camera and the two hyperbolic mirrors makes the epipolar line radially collinear, which 
makes the system free of the search process for complex epipolar curve in stereo matching 

The calibration results with real data are listed in Table 1. 

xt yt zt

value -0.9539° 0.1366° 0.1436° -0.0553mm -0.1993mm 1.8717mm 

Table 1. Calibration result with real data 

The calibration error was estimated using a new set of 40 untrained points, the average 
square error of the set points is 34.24mm without considering the camera-to-mirror 
transformation. Then we calculate the error with the transformation values listed in Table 1, 
the average square error decrease to 12.57mm. 
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4. Stereo Matching 

4.1 Overview 

To build a depth map for mobile robot navigation, the most important and difficult process 
is omnidirectional stereo matching. Once two image points respectively projected by upper 
mirror and bellow mirror are matched, the 3D coordinate of the corresponding space point 
can be obtained by triangulation. State of the art algorithms for dense stereo matching can 
be divided into two categories: 

Figure 4. Real indoor scene captured by our vision system for depth map generation 

1. Local method: These algorithms calculate some kind of similarity measure over an 
area (Devernay & Faugeras, 1994). They work well in relatively textured areas in a 
very fast speed, while they cannot gain correct disparity map in textureless areas 
and areas with repetitive textures, which is a unavoidable problem in most 
situations. In (Sara, 2002) a method of finding the largest unambiguous component 
has been proposed, but the density of the disparity map varies greatly depend on 
the discriminability of the similarity measure in a given situation. 

2. Global method: These methods make explicit smoothness assumptions and try to 
find a global optimized solution of a predefined energy function that take into 
account both the matching similarities and smoothness assumptions. The energy 
function is always in the form of )()()( dEdEdE smoothdata •+= λ , where λ  is a 
parameter controlling the proportion of smoothness and image data. Most recent 
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algorithms belong to this category (Lee et al., 2004; Bobick, 1999; Sun & Peleg, 2004; 
Felzenszwalb & Huttenlocher, 2006). Among them belief propagation 
(Felzenszwalb & Huttenlocher, 2006) ranked high in the evaluation methodology 
of Middlebury College. It is based on three coupled Markov Random Fields that 
model smoothness, depth discontinuities and occlusions respectively and produces 
good result. The biggest problem of global method is that the data term and the 
smoothness term represent two processes competing against each other, resulting 
in incorrect matches in areas of weak texture and areas where prior model is 
violated. 

Although numerous methods exist for stereo matching, they are designed towards ordinary 
stereo vision purpose. The images acquired by our system (Fig. 4) have some particularities 
in contrast to normal stereo pairs as follows, which may lead to poor result using traditional 
stereo matching methods:  

1. The upper mirror and bellow mirror have different focal length that the camera 
focal length has to compromise with the two, thus causing defocusing effect, 
resulting in much less discriminable similarity measures. A partial solution is to 
reduce the aperture size at the cost of decreasing the intensity and contrast of the 
image.

2. Indoor scene has much more weak textured and textureless areas than outdoor 
scene. There are more distortions in our images, including spherical distortions and 
perspective distortions due to close quarters of the target areas and the large 
baseline.  

3. The resolution gets lower when moving away from the image center. The result is 
the farther off the center, the more unreliable the matching result is.  

To solve problem (1), we propose a three-step method that allows matching distinctive 
feature points first and breaks down the matching task into smaller and separate 
subproblems. For (2) we design a specific energy function used in the third step DTW, in 
which different weights and penalty items are assigned to points of different texture level 
and matching confidence; and throw away the matching result of the most indiscrminable 
points, replacing it with interpolation. For (3), we regard points farther than the most 
farthest matched feature point off the center as unreliable, leaving them as unknown areas. 
This is also required by DTW. 
Epipolar geometry makes the stereo matching easier by reducing the 2D search to a 1D 
search along the same epipolar line in both images. To handle epipolar property 
conveniently, we unwrapped the raw image to two panoramic images which corresponding 
to images via bellow and upper mirrors respectively (Fig. 9, a, b). The matching process is 
done on every epipolar pair respectively. The red lines labeled in the two panoramic images 
are the same epipolar line for the subsequent illustration of our proposed method, of which 
the one above has 190 pixels and the one below 275 pixels. 

4.2 Similarity Measure and Defined Texture Level 

The similarity measure we choose here is zero-mean normalized cross correlation (ZNCC), 
since it is invariant to intensity and contrast between two images. But directly using this 
measure would result in low discriminability as two templates with great difference in 
average gray-level or standard deviation which cannot be deemed as matched pair may 



A Novel Omnidirectional Stereo Vision  System via a Single Camera 29

have high ZNCC value. To avoid this possibility, we modified ZNCC (called MZNCC) by 
multiplying a window function as follows: 

         
a)

b)
Figure 5. a) The curve of texture intensity along the epipolar line. To show it clearly, we 
removed the part where the curve is higher than 100 and only labeled the detected feature 
points. b) Detected reliable FX-dominant matching result in the MZNCC matrix. The black 
region of the matrix is formed since it is out of the disparity search range 
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aσ  and bσ  are the standard deviation. For every epipolar line, all MZNCC values are stored 
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as a matrix (Fig. 5b) to be used in the next step. The y-axis represents the pixel number in the 
epipolar of Fig. 9a, while x-axis represents the number in Fig. 9b. 

         
a)

b)

Figure 6. a) Result of feature matching. All points labeled in the graph mean candidate 
match for detected features, of which red and green are the result chosen by maximization 
of sum of MZNCC and then green are removed for being ambiguous. b) the global 
maximum MZNCC value for each point in this epipolar (blue) and MZNCC value along the 
matching route chosen by our algorithm (red) 

We define our texture level of each point following the notion of bandwidth of the bandpass 
filter. For a given pixel and a given template centred in the pixel, we slide the template one 
pixel at a time in the two opposite directions along the epipolar line and stop at the location 
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the MZNCC value of the shifted template with the primary one decrease below a certain 
threshold for the first time. Let l  be the distance between the two stop points, which is 
inverse proportional the texture level. The definition of texture intensity can be formalized 
as:
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where r  is the radius of the template. The texture intensity curve of the red labelled 
epipolar line is shown in Fig. 5a. With the use of this defined texture intensity and two 
thresholds, the whole image can be divided into three regions: strong textured, weak 
textured and textureless regions. 

4.3 Reliable FX-dominant Matching 

This step follows the notion of FX-dominant defined by Sara (Sara, 2001). The key of this 
notion is the uniqueness constraint which means each point may be matched with at most 
one point in another image, and the ordering constraint which states the order of the 
matched points in the two epipolar line is the same. The latter one is not always true, but it 
is reasonable for most cases, especially indoor scene. The FX-region of a certain matched 
pair ),( ji  in the MZNCC matrix is defined as the set of pairs that cannot coexist with ),( ji
without violating these two constraints: 

})()(|),({)( pqjlikjliklkqpFX ≠∧≥∧≤∨≤∧≥==  (12) 

It is formed by two opposite quadrants around ),( ji  in the MZNCC matrix. And FX-
dominant matching is to find pairs that have higher value than any pair in the FX-region. 
However, due to noise and distortion, the selected FX-dominant pairs still can not ensure its 
reliability. We only choose pairs from the FX-dominant results which satisfy the condition 
that the difference of the MZNCC value of the pair and the second local maximum MZNCC 
of ppFX ∪)(  is higher than a threshold (we choose 0.15). The number of pairs chosen by 
such strategy is quite small (2--8 in our case), but it does make sense because FX-region of 
these pairs can be removed that the matching problem is divided into subproblems. Without 
this step, the next step of feature matching will find much less number of reliable matched 
features. The result of reliable FX-dominant matching is shown in Fig. 5b, and the matrix 
with FX-region cut is shown in Fig. 6a. 

4.4 Feature Matching and Ambiguous Removal 

In this step, firstly we plot the curve of the texture intensity for a given epipolar line and 
choose all local maximum as feature points (Fig. 5a all points labelled red cross). For every 
feature point every matching pair with local maximum MZNCC higher than 0.7 is labelled 
as a candidate match (Fig. 6a all labelled points). Then we select a combination of candidate 
matching pairs that obeys uniqueness constraint and ordering constraint and has the highest 
sum of MZNCC (A feature point can be left unmatched with a zero contribution to the sum 
of MZNCC). The selected combination of illustrating epipolar shown in Fig. 6a is labelled 
red and green. In this selected combination, still some ambiguous match candidates exist. 
We mean a selected candidate is unambiguous if it is the only choice without altering other 
matched feature points under uniqueness and ordering constraint, otherwise it is 
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ambiguous. We will then remove all ambiguous feature points until no matched feature is 
ambiguous. In Fig. 6a, the ambiguous match candidates are labelled green and they are to be 
removed from the feature matching result. 

        
a)

b)
Figure 7. a) Matching route in the MZNCC matrix via DTW.  b) computed depth curve for 
this epipolar line 
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4.5 Dense Matching via DTW 

The remaining correspondences can be determined by dynamic time warping (DTW) (Lee et 
al., 2004). A starting and an ending point should be known at first to use DTW. The matched 
feature points in the last step can naturally perform this role. Therefore, DTW can be applied 
to every range between adjacent matched feature points. This objective of DTW is achieved 
by finding a path with optimized energy function in a search space defined by the search 
range and restricted by the starting and ending point as well as the uniqueness and ordering 
constraint, using dynamic programming technique. The most important part is the 
definition of the energy function. Unlike others straightforwardly use sum of intensity 
difference (Lee et al., 2004) or define the energy function with smoothness item (this can 
hardly be implemented in our case as the assumption that flat areas correspond to constant 
disparity route usually does not hold due to the large baseline), we define our energy 
function in the form of sum of MZNCC value plus a penalty item aim to assign different 
weights to different points based on the texture level and matching confidence: 

+= ),(),( jipenaltyjiMZNCCE  (13) 

where ),( ji  is in the matching route. To define the penalty item, we make another 
classification of all points. A point is belong to Class A (high confidence) if the global 
maximum MZNCC value is higher than 0.7, Class B (low confidence) if the global maximum 
MZNCC is between 0.5 and 0.7, otherwise Class C (noise). Then the penalty item is defined 
as Table 2, 

 strong textured weak textured textureless 

A )0),7.0max(( MZNCC−••− μλ )0),7.0max(( MZNCC−•−μ 0

B )0),5.0max(( MZNCC−•••− μλσ )0),5.0max(( MZNCC−••− μσ MZNCC−

C MZNCC− MZNCC− MZNCC−

Table 2. The penalty item 

where λ  is the strong texture weight, μ  is penalty level and σ  low confidence weight (in 
our case, λ =4, μ =4, σ =0.4).
The result of DTW performed in the red labelled epipolar is shown in Fig. 7a, the computed 
depth curve in Fig. 7b. Fig. 6b shows the MZNCC curve along the matching route and the 
global maximum MZNCC curve for the epipolar. From Fig. 5a and Fig. 6b, we can see that 
the result route only deflects the global maximum MZNCC curve in textureless points and 
points belonging to low confidence or noise, which is an ideal result. 

4.6 Postpocessing 

A postprocessing step replacing textureless match with interpolation is applied to get 
smooth surfaces. As in the textureless areas, the similarity value is very ambiguous that the 
matching route can vary greatly with very small energy variation. The result is that the 
maximization of energy function does not necessarily correspond to the correct match, 
causing jagged depth map (Fig. 7b) Easily observed, the textureless areas almost correspond 
to a plane (as the threshold of textureless area is set so low that uneven areas will be 
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categorized as weak textured areas due to slightly different illumination), we use two 
nearest textured (strong or weak) match to interpolate the textureless point. After that, a 
medium filter is applied to ensure the smoothness of depth map. Fig. 8 shows the result of 
matching route and the depth curve after postprocessing. 

a)

       
b)

Figure 8. a) Final matching route in the MZNCC matrix after post-processing. b) computed 
depth curve for this epipolar line 
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                                                                                a 

                                                                                b 

                                                                                 c 

Figure 9. Panoramic images unwrapped from the raw images of Fig.4 (a and b are converted 
by images via the bellow and upper mirrors respectively) and the detected depth map (c) 
corresponding to a 

4.7 Result 

Fig. 9c shows the result of the generated depth map via the proposed method. This depth 
map measures the height above the floor. The brightness of the map is proportional to the 
height, while black represents unknown areas. Although the ground truth map is 
unavailable, the real height can be surveyed accurately for most points. We randomly 
selected hundreds of points and checked the error, finding that most are smaller than 15mm, 
only slightly higher than the calibration error. We set the threshold of navigable areas as 
25mm above the floor and get the navigable map in Fig. 10. 

5. Summary 

We have developed a complete framework of automatically generating omnidirectional 
depth maps around a mobile robot using a novel designed panoramic vision sensor. 
Compared to previous vision systems, our system has such significant advantages as its 
geometry calculating easy and fast and simultaneous acquisition of precise range 
information without high cost or system complexity. And as the separation between the two 
hyperbolic mirrors provides a large baseline, the range information obtained from this 
method has much improved precision. We have proposed an imaging model for 
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omnidirectional cameras that accounts for the full rotation and translation between the 
camera and mirrors, and a LMBP method for recovering the relative position form back-
projection the images points. The method is general in that any combination of camera and 
mirrors can be calibrated, including non-single-viewpoint combinations. For SVP cameras, 
where the merit of a single viewpoint can be exploited only if the camera and mirrors are 
assumed to be perfectly aligned, this algorithm can be used to verify the alignment 
accuracy. We also have presented a three-step method for stereo matching of our vision 
system, which combines the advantage of feature matching and global matching. This 
method basically solved the three major difficulties faced by our vision system. The 
experimental result is quite convincing. Although this method uses some thresholds and 
parameters, the matching result does change in case of small variation of parameters.  

Figure 10. Omnidirectional scene information obtained by our system, of which green 
represents navigable areas, red detected obstacle areas 

However, the proportion of detected areas is a bit small in a few epipolar lines. To solve this 
problem, one way is to impose inter-epipolar consistency in the stereo matching method. 
Another is to use multibaseline stereo, that is, we can first estimate relative pose between 
different shooting positions, and then depth map can be generated more reliably with more 
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virtual cameras. Our future work will focus on these aspects. Also, we found that some 
techniques to deal with the defocusing effect have been proposed to improve the image 
quality. We will also investigate the possibility to get a better method with some pre-
processing techniques. 
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1. Introduction 

Traffic accidents have become an important cause of fatality in modern countries. For 
instance, in 2002, motor vehicle accidents represented the half of non-natural death in the 
United States (National Center of Health Statistics, 2002); while in 2003 there were reported 
almost 150,000 injured and 7,000 killed in pedestrian accidents only in the European Union 
(United Nations Economic Commission for Europe, 2005). In order to improve safety, the 
industry has progressively developed different elements of increasing complexity and 
performance: from turn signals and seat belts to Anti-lock Braking Systems (ABS) and 
internal Airbags. Recently, research has moved towards even more intelligent on-board 
systems that aim to anticipate and prevent the accidents, or at least, minimize their effects 
when unavoidable. They are referred as Advanced Driver Assistance Systems (ADAS), in 
the sense that they assist the driver to take decisions, provide warnings in dangerous 
driving situations, and even at taking automatic evasive actions in extreme cases. 
One of the most prominent components of ADAS are the vision systems (monocular or 
stereo), which capture in a single snapshot all the surrounding information. Although 
monocular vision systems allow higher acquisition/processing rates, the use of on-board 
stereo vision heads is gaining popularity in ADAS applications. Stereo rigs are able to 
provide 3D information useful for facing up problems that can not be tackled with 
monocular systems (e.g., reliable distance estimation). Furthermore, the current technology 
is producing more and more inexpensive and compact stereo vision systems that let us think 
on a promising future. 
Accurate and real time camera pose estimation is one of the common difficulties of on-board 
vision systems. Applications such as obstacle avoidance, pedestrian detection, or traffic 
signal recognition, could both speed up the whole process and make use of additional 
information by a precise estimation of the current camera extrinsic parameters, related to the 
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road. Most of recent works (e.g., Bertozzi et al., 2003b; Coulombeau & Laurgeau, 2002; Liang 
et al., 2003; Ponsa et al., 2005; Labayrade & Aubert, 2003) assume, or impose, a scene prior 
knowledge to simplify the problem. Although prior knowledge has been extensively used to 
tackle the driver assistance problem, it should be carefully used since it may lead to wrong 
results. Unlike previous works, this chapter presents an approach to estimate in real time 
stereo vision camera pose by using raw 3D data points. 
This chapter is organized as follows. Section 2 summarizes some of the approaches 
proposed in the literature to compute on-board vision system pose. The proposed approach 
is described in section 3. Section 4 presents experimental results on urban scenes, together 
with comparisons with (Sappa et al., 2006). Finally, conclusions and further improvements 
are given in section 5. 

2. Previous Approaches 

In this work, since we only have a road plane equation, the camera pose will refer to two 
independent angles plus a translational distance. Several techniques have been proposed in 
the literature for robust vision system pose estimation. They can be classified into two 
different categories: monocular or stereo. In general, monocular systems are used on an off-
line pose estimation basis. To this end, the car should be at rest and should face a flat road; 
once the camera pose is estimated its values are assumed to keep constant, or vary within a 
predefined range, during the on-line process (e.g., Ponsa et al., 2005; Bertozzi et al., 2003b). 
Although useful in most of highway scenarios, constant camera position and orientation is 
not a valid assumption to be used in urban scenarios since in general, vehicle pose is easily 
affected by road imperfections or artifacts (e.g., rough road, speed bumps), car’s 
accelerations, uphill/downhill driving, to mention a few. Notice that since the vision system 
is rigidly attached to the vehicle, camera pose and vehicle pose are indistinctly used through 
this work. 
In order to tackle urban scenarios, some monocular systems have been proposed to 
automatically compute camera pose by using the prior knowledge of the environment (e.g., 
Franke et al., 1998; Bertozzi et al., 2003a; Suttorp & Bücher, 2006). However, scene prior-
knowledge not always can help to solve problems, in particular when cluttered and 
changing environment are considered, since visual features are not always available. 
On the contrary to monocular approaches, stereo based systems in general are used on an 
on-line pose estimation basis. Since 3D data points are computed from every stereo pair, the 
corresponding vision system pose can be directly estimated related to these data whenever 
required. Broadly speaking, two different stereo matching schemes are used to compute 3D 
data points, either matching edges and producing sparse depth maps or matching all pixels 
in the images and producing dense depth maps (Faugeras & Luong, 2001). The final 
application is used to define whether preference is given to edge-based correspondences or 
to dense stereo correspondences. In general, for a successful reconstruction of the whole 
environment it is essential to compute dense disparity maps defined for every pixel in the 
entire image. However, the constraint of having a reduced computational complexity some 
times prevents the use of dense disparity maps. This very challenging problem has been 
usually tackled by making assumptions regarding the scene or by imposing constraints on 
the motion of the on-board stereo system. Furthermore, several solutions are proposed in 
order to compute 3D data points in a fast way based on ad hoc or application-oriented 
stereo vision systems. Although attractive, from the point of view of reduced processing 
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time, the use of ad hoc stereo vision systems is limited since no other approaches could take 
advantage of those application-oriented 3D data points. 
Different techniques relying on stereo vision systems have been proposed in the literature 
for driver assistance applications. For instance, the edge based v-disparity approach 
proposed in (Labayrade et al., 2002), for an automatic estimation of horizon lines and later 
on used for applications such as obstacle or pedestrian detection (e.g., Bertozzi et al., 2005; 
Broggi et al., 2003; Hu & Uchimura, 2005); it only computes 3D information over local 
maxima of the image gradient. A sparse disparity map is computed in order to obtain a real 
time performance. This v-disparity approach has been extended to a u-v-disparity concept in 
(Hu & Uchimura, 2005). In this new proposal, dense disparity maps are used instead of only 
relying on edge based disparity maps. Working in the disparity space is an interesting idea 
that is gaining popularity in on-board stereo vision applications, since planes in the original 
Euclidean space become straight lines in the disparity space. Up to our knowledge, all the 
approaches proposed to work on v-disparity space are based on Hough transform algorithm 
for extracting straight lines. 
In this chapter a real time approach able to handle the whole 3D data points of a scene is 
presented. Hence, while the proposed technique is intended to estimate the stereo vision 
camera pose parameters, collision avoidance algorithms or pedestrian detection could make 
use of the same 3D data together with the estimated camera pose. In other words, the 
underlying idea of the proposed approach is to develop a standalone application that runs 
independently from others applications or hardware systems. In this sense, a commercial 
stereo pair is used, instead of relying on an ad hoc technology. This will allow us in the 
future to upgrade our current stereo vision sensor without changing the proposed 
technique. 

3. Proposed Approach 

The proposed approach consists of two stages. Initially, 3D data are mapped onto YZ plane 
(see Fig. 1), where a set of candidate points are selected⎯candidates to belong to the road. 
The main objective of this first stage is to take advantage of the 2D structured information 
before applying more expensive processing algorithms working with raw 3D data. 
Secondly, a RANSAC based least squares fitting is used to estimate the parameters of a 
plane (i.e., road plane) fitting to those candidate points. Finally, camera position and 
orientation are directly computed, referred to the fitted plane. Similarly to (Sappa et al., 
2006), the provided results could be understood as a piecewise planar approximation, due to 
the fact that road and camera parameters are continuously computed and updated. Note 
that since on-board vision system pose is related to the current 3D road plane, camera 
position and orientation are equivalent to the 3D road plane parameters⎯3D plane 
parameters are expressed in the camera coordinate system. The proposed technique could 
be indistinctly used for urban or highway environments, since it is not based on a specific 
visual traffic feature extraction but on raw 3D data points. Before going into details about 
the proposed approach, the on-board stereo vision system is briefly introduced. 
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3.1 Stereovision System 

A commercial stereo vision system (Bumblebee from Point Grey1) was used. It consists of 
two Sony ICX084 colour CCDs with 6mm focal length lenses. Bumblebee is a pre-calibrated 
system that does not require in-field calibration. The baseline of the stereo head is 12cm and 
it is connected to the computer by a IEEE-1394 connector. Right and left colour images were 
captured at a resolution of 640×480 pixels and a frame rate near to 30 fps. After capturing 
these right and left images, 3D data were computed by using the provided 3D 
reconstruction software. Fig. 1 shows an illustration of the on board stereo vision system. 

Figure 1. On-board stereo vision sensor with its corresponding coordinate system 

3.2 3D data point projection and noisy data filtering 

Let S(r,c) be a stereo image with R rows and C columns, where each array element (r,c) 
(r∈[0,(R-1)] and c∈[0,(C-1)]) is a scalar that represents a surface point of coordinates (x,y,z),
referred to the sensor coordinate system. Fig. 1 depicts the sensor coordinate system 
attached to the vehicle's windshield. Notice that vertical variations between consecutive 
frames⎯due to road imperfections, car accelerations, changes in the road slope: 
flat/uphill/downhill driving, etc⎯will mainly produce changes on camera height and pitch 
angle (camera height is defined as the distance between the origin of the coordinate system 
and the road plane). In other words, yaw and roll angles are not so affected by those 
variations. Even though the roll angle is not plotted in this paper, its value is easily retrieved 
from the plane equation. The estimation of yaw angle is not considered in this work. 
The aim at this stage is to find a compact subset of points, ζ, containing most of the road 
points. Additionally, noisy data points should be reduced as much as possible in order to 
avoid both a very time consuming processing and a wrong plane fitting. 
Original 3D data points (xi, yi, zi) are mapped onto a 2D discrete representation P(u,v);
where u = (yi ⋅ σ  and v = (zi ⋅ σ . σ represents a scale factor defined as: 
σ=((R+C)/2)/((ΔX+ΔY+ΔZ)/3); R, C are the image's rows and columns respectively, and 
                                                                
1 www.ptgrey.com
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(ΔX, ΔY, ΔZ) is the working range in every dimension⎯on average (34×12×50) meters. Every 
cell of P(u,v) keeps a pointer to the original 3D data point projected onto that position, as 
well as a counter with the number of mapped points. Fig. 2(top-right) shows the 2D 
representation obtained after mapping the 3D cloud presented in Fig. 2(left)⎯every black 
point represents a cell with at least one mapped 3D point. 

0

Figure 2. (left) 3D data points from the stereo rig. (top-right) Points projected to the YZ plane. 
(bottom-right) Cells finally selected to be used during the plane fitting stage (notice that one 
cell per column has been selected using the dynamic threshold) 

Finally, points defining the ζ subset are selected by picking up one cell per column. This 
selection process is based on the assumption that the road surface is the predominant 
geometry in the given scene⎯urban or highway scenarios. Hence, it goes bottom-up, in the 
2D representation, through every column, and picks the first cell with more points than an 
adaptive threshold, τ. Cells containing less mapped points than τ are filtered by setting to 
zero its corresponding counter⎯points mapped onto those cells are considered as noisy 
data. The value of τ is defined for every column as 80% of the maximum amount of points 
mapped onto the cells of that column. It avoids the use of a fixed threshold value for all 
columns. Recall that the density of points decreases with the distance to the sensor, hence 
the threshold value should depend on the depth⎯the column position in the 2D mapping. 
This is one of the differences with respect to (Sappa et al., 2006), where a constant threshold 
value was defined. Fig. 2(bottom-right) depicts cells finally selected. The ζ subset of points 
gathers all the 3D points mapped onto those cells. 

3.3 RANSAC based plane fitting 

The outcome of the previous stage is a subset of points, ζ, where most of them belong to the 
road. In the current stage a RANSAC based technique (Fischler & Bolles, 1981) is used for 
fitting a plane to those data2, ax+by+cz=1. In order to speed up the process, a predefined 
threshold value for inliers/outliers detection has been defined (a band of ±5cm was enough 
for taking into account both 3D data point accuracy and road planarity). An automatic 
threshold could be computed for inliers/outliers detection following robust estimation of 
standard deviation of residual errors (Rousseeuw & Leroy, 1987). 
                                                                
2 Notice that the general expression ax+by+cz+d=0 has been simplified dividing by (-d), since 

we already know that (d 0).
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Figure 3. Results from a short video sequence: (left) Camera height; (right) Camera pitch 
angle

The proposed plane fitting works as follows. 

Random sampling: Repeat the following three steps K times (in our experiments K=100)
1. Draw a random subsample of 3 different 3D points from ζ.
2. For this subsample, indexed by k (k = 1, .... , K), compute the plane parameters (a,b,c).
3. For this solution (a,b,c)k, compute the number of inliers among the entire set of 3D 

points contained in ζ, as mentioned above using ±5cm as a fixed threshold value. 

Solution: 
1. Choose the solution that has the highest number of inliers. Let (a,b,c)i, be this solution. 
2. Refine (a,b,c)i considering its corresponding inliers, by using the least squares fitting 

approach (Wang et al., 2001), which minimize the square residual error (1-ax-by-cz)2.
3. In case the number of inliers is smaller than 10% of the total amount of points contained 

in ζ, those plane parameters are discarded and the ones corresponding to the previous 
frame are used as the correct ones. In general, this happens when 3D road data are not 
correctly recovered since occlusion or other external factor appears. 

Finally, camera height (h) and orientation (Θ), referred to the fitted plane (a,b,c), are easily 

computed. Camera height is given by: h = 1/ 222 cba ++ . Camera orientation⎯pitch 
angle⎯is directly computed from the current plane orientation: Θ = arctan(c/b). Both values 
can be represented as a single one by means of the horizon line (e.g., Zhaoxue & Pengfei, 
2004; Rasmussen, 2004a; Rasmussen, 2004b), in particular this compact representation will 
be used in the next section for comparisons. The horizon line position (vi) for a given frame 
(i) is computed by back-projecting into the image plane a point lying over the plane, far 
away from the camera reference frame, Pi(x, y, z). Let (yi = (1 - czi)/b) be the y coordinate of Pi

by assuming xi=0. The corresponding yi back-projection into the image plane, which define 
the row position of the sought horizon line, is obtained as vi = v0 + f yi / zi = v0 + f/(zi b) – f c/b;
where, f denotes the focal length in pixels; v0 represents the vertical coordinate of the 
principal point; and zi is the depth value of Pi (in the experiments zi = 10,000).
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Figure 4. (top) Horizon line for the video sequence presented in Fig. 3. (bottom) Two single 
frames with their corresponding horizon line 

4. Experimental Results 

The proposed technique has been tested on different urban environments. The proposed 
algorithm took, on average, 350 ms per frame on a 3.2 GHz Pentium IV PC with a non-
optimized C++ code. 
Fig. 3 presents variations in the camera height and pitch angle during a sequence of about 
one minute long⎯only variations in the camera height position and pitch angle are plotted, 
both related to the current fitted plane. Notice that, although short, this video sequence 
contains downhill/uphill/flat scenarios (see Fig. 4 (bottom)). This illustration shows that 
variations in the camera position and orientation cannot be neglected, since they can change 
considerably in a short trajectory (something that does not happen on highways scenarios). 
These variations can be easily appreciated on the horizon line representation presented in 
Fig. 4 (top).
A comparison between the proposed technique and (Sappa et al., 2006) has been performed 
using a 100 frame-long-video sequence. The main difference between these techniques lies 
on the way cells to be fitted are selected, section 3.2. Fig. 5 presents camera height and pitch 
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angle of both approaches. Fig. 6 depicts the corresponding horizon line position, computed 
with both approaches, as a function of the sequence frames. Although both approaches give 
similar results, values obtained with the new proposal are more reliable and fit better the 
current road geometry, since not only cells near to the sensor but the whole set of point on 
the direction of the camera optical axis is used. Finally, Fig. 7 presents four single frames of 
this video sequence together with their corresponding horizon line. 
The proposed technique is already being used on a shape-based pedestrian detection 
algorithm (Gerónimo et al., 2006) in order to speed up the searching process. Although out 
of the scope of this paper, Fig. 8 presents illustrations of two different scenarios showing the 
importance of having the right estimation of camera position and orientation. In these 
illustrations, (a), (b) and (c) columns show results by using three different, but constant, 
horizon line positions, while (d) column depicts the corresponding results obtained by using 
a horizon line position automatically computed by the proposed technique. Following the 
algorithm presented in (Ponsa et al., 2005), a 3D grid, sampling the road plane, is projected 
on the 2D image. The projected grid nodes are used as references to define the bottom-left 
corners of pedestrian sized searching windows. These windows, which have a different size 
according to their corresponding 3D depth, move backward and forward over the assumed 
plane looking for a pedestrian-like shape. Therefore, a wrong road plane orientation⎯i.e., 
horizon line⎯drives to a wrong searching space, so that the efficiency of the whole 
algorithm decreases. A few searching bounding boxes are highlighted in Fig. 8 to show their 
changes in size according to the distance to the camera. 

Figure 5. Results obtained by using the proposed technique (dynamic threshold) and (Sappa 
et al., 2006) (fixed threshold): (top) Camera height; (bottom) Camera pitch angle 



Stereo Vision Camera Pose Estimation for On-Board Applications 47

Figure 6. Horizon line position corresponding to the sequence presented in Figure 5. 

Figure 7. Horizon line for four different frames of the sequence presented in Figure 5. 
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(a) (b) (c) (d)

Figure 8. Searching bounding boxes using fixed and automatically computed horizon lines. 
In all the cases only very few bounding boxes are highlighted. Fixed horizon line 
ASSUMING: (a) an uphill road; (b) a flat road; (c) a downhill road. (d) Automatically 
computed horizon line by using the proposed technique. Notice that, only in the latter case, 
the horizon line position is correctly placed in both scenarios. 

5. Conclusions and Further Improvements 

An efficient technique for a real time pose estimation of an on-board camera has been 
presented. It improves a previous proposal (Sappa et al., 2006) by defining a dynamic 
threshold for selecting points to be fitted. After an initial mapping and filtering process, a 
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compact set of points is chosen for fitting a plane to the road. The proposed technique can fit 
very well to different road geometries, since plane parameters are continuously computed 
and updated. A good performance has been shown in several scenarios⎯uphill, downhill 
and flat roads. Furthermore, critical situations such as car's accelerations or speed bumps 
were also considered. Although it has been tested on urban environments, it could be also 
useful on highways scenarios. 
Further work will be focused on developing new strategies in order to reduce the initially 
chosen subset of points; for instance by using a non-constant cell size for mapping the 3D 
world to 2D space (through the optical axis). A reduced set of points will help to reduce the 
whole CPU time. Furthermore, the use of Kalman filtering techniques and other geometries 
for fitting road points will be explored.
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1. Introduction      

Most algorithms in 3-D Computer Vision rely on the pinhole camera model because of its 
simplicity, whereas video optics, especially wide-angle lens, generates a lot of non-linear 
distortion. In some applications, for instance in stereo vision systems and robotic systems, 
this distortion can be critical. 
Camera calibration consists of finding the mapping between the 3-D space and the camera 
plane. This mapping can be separated in two different transformations: first, the relation 
between the origin of 3-D space (the global coordinate system) and the camera coordinate 
system, which forms the external calibration parameters (3-D rotation and translation), and 
second the mapping between 3-D points in space (using the camera coordinate system) and 
2-D points on the camera plane, which forms the internal calibration parameters (Devernay 
& Faugeras, 1995). 
Fig. 1 shows two types of distortion due to lens: barrel and pincushion distortions and a 
rectangle without any distortion like reference (e.g. the image taken by an ideal pinhole 
camera) (Weng et al. 1992). The pincushion distortion is due to zoom lens and the barrel 
distortion is due to wide angle lens. In commercial cameras with wide angle lens the most 
important component of the barrel distortion is the radial distortion and this chapter 
introduces a method to find the internal calibration parameters of a camera, specifically 
those parameters required to correct the radial distortion due to wide-angle lens. 

Figure 1. Types of distortion 
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The method works with two images, one from the camera and one from a calibration 
pattern (without distortion) and it is based on a non-linear optimization method to match 
feature points of both images, given a parametric distortion model. The image from the 
calibration pattern can be a scanned image, an image taken by a high quality digital camera 
(without lens distortion), or even the binary image of the pattern (which printed becomes 
the pattern). 
First, a set of feature point correspondences between both images are computed 
automatically. The next step is to find the best distortion model that maps the feature points 
from the distorted image to the calibration pattern. This search is guided by analytical 
derivatives with respect to the set of calibration parameters. The final result is the set of 
parameters of the best distortion model. 
The rest of this chapter is organized as follows. Section 2 describes the problem to compute 
transformed images and it presents the Bilinear Interpolation as a solution to that problem. 
Sections 3 and 4 describe the distortion and projective model that we are using. Section 5 
presents the method to match pairs of points. A brief comparison with previous calibration 
methods is found in section 6. Here we show the problems associated with cameras using 
wide angle lens and why some previous methods fail or require a human operator. 
Experimental results are shown in Section 7. Finally, some conclusions are given in Section 
8.

2. Computing Transformed Images 

For integer coordinates (i,j), let I(i,j) gives the intensity value of the pixel associated to 
position (i,j) in image I. Let Id and It be the original (distorted image taken from the camera)  
and the transformed image, respectively. A geometric transformation, considering a set  of 
parameters, computes pixels of the new image, It(i,j) in the following way: 

 It(i,j) = Id(x( ,i,j),y( ,i,j)) (1) 

If x( ,i,j) and y( ,i,j) are outside of the image I0, a common strategy is to assign zero value 
which represents a black pixel. But, What happen when x( ,i,j) and y( ,i,j) have real values 
instead of integer values? Remember that image Id(x,y) have only valid values when x and y
have integer values. An inaccurate method to solve this problem is to use their nearest 
integer values, but next section presents the bilinear interpolation, a much better method to 
interpolate a pixel with real coordinates (x,y) in an image. 
From other point of view, pixel Id(x,y) moves to the position It(i,j). However, most 
transformations define points in the new image given points in the original image. In that 
case, to apply the bilinear transformation, we need to compute the inverse transformation 
that maps new points (or coordinates) to points (or coordinates) in the original image. 

2.1 Bilinear Interpolation 

If xi and xf are the integer and fractional part of x, respectively, and yi and yf the integer and 
fractional part of y, Figure 2 illustrates the bilinear interpolation method (Faugeras, 1993) to 
find I(xi+xf, yi+yf), given the four nearest pixels to position (xi+xf, yi+yf): I(xi,yi), I(xi+1, yi),
I(xi,yi+1), I(xi+1,yi+1) (image values at particular positions are represented by vertical bars in 
Figure 2). First two linear interpolations are used to compute two new values I(xi,yi+yf) and 
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I(xi+1,yi+yf) and then another linear interpolation is used to compute the desired value 
I(xi+xf,yi+yf) from the new computed values: 

I(xi, yi+yf) = (1-yf)I(xi,yi)+yf I(xi,yi+1)

 I(xi+1, yi+yf) = (1-yf)I(xi+1,yi)+yf I(xi+1,yi+1)  (2) 

 I(xi+xf, yi+yf) = (1-xf)I(xi,yi+yf)+xf I(xi+1,yi+yf)

Using the bilinear interpolation, a smooth transformed image is computed. Now we are able 
to deal with the transformation associated with cameras. In section 5.3 we describe the 
process to build new images from distorted images and the set of parameters of the 
distortion and projection model. 

Figure 2. Using the bilinear interpolation 

3. The Distortion Model 

The radial distortion process due to wide-angle lens is illustrated in Figure 3. Figure 3 (b) 
shows an image taken from the camera when the pattern shown in Figure 3 (a) is in front of 
the camera. Note the effect of lens, the image is distorted, specially in those parts far away 
from the center of the image. 

Figure 3. The distortion process due to wide angle lens 
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Figure 3 (c) shows the radial distortion in detail, supposing that the center of distortion is 
the point Cd with coordinates (cx,cy) (no necessarily the center of the image). Let Id be the 
distorted image captured by the camera and Iu the undistorted image associated to Id.
In order to correct the distorted image, the distorted point at position Pd with coordinates 
(xd, yd) in Id should move to point Pu with coordinates (xu,yu). Let rd and ru be the Euclidian 
distance between Pd and Cd, and between Pu and Cd, respectively. The relationship between 
radial distances rd and ru can be modeled in two ways: 

 rd = ruf1(ru2)  (3) 

 ru = rdf2(rd2) (4) 

Approximations to arbitrary function f1 and f2 may be given by a Taylor expansion: (f1(ru2) = 
1+k1ru2+k2ru4+...) and (f2(rd2) = 1+k1rd2+k2rd4+...). Figure 4 helps to see the difference between f1

and f2 considering only k1 for a typical distortion in a wide-angle lens. f1 models a 
compression while f2 models an expansion.  

Figure 4. Two different functions to model the distortion of images 

The problem with f1 is that there is the possibility to get the same rd for two different values 
of ru (see Fig. 5).  

Figure 5. Problem using f1. A single rd is related with two different ru
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In fact, this behavior was found experimentally when we use f1. Figure 6 shows an example. 
Borders of the corrected image duplicate parts of the image (see the top corners in Figure 
6(b)). However f2 does not have this problem. 

        
(a) Original image                   (b) Corrected image 

Figure 6. An example of a wrong correction using f1

From now on, we consider only eq. 4. Experimentally we found that we need to consider 
four terms for f2, to remove the distortion due to wide-angle lens. Then, the coordinates 
(xu,yu) of Pu can be computed by: 

                                                   xu = cx+(xd – cx) f2(rd2)
= cx + (xd – cx)(1 + k1rd2 + k2rd4 + k3rd6)

                                                   yu = cy + (yd – cy) f2(rd2)
= cy + (yd – cy)(1 + k1rd2 + k2rd4 + k3rd6)

                                                  rd2 = (xd – cx)2 + (yd – cy)2

(5)

where (cx,cy) are the coordinates of the center of radial distortion. So, this distortion model 
have a set of five parameters d = {cx,cy,k1,k2,k3}. This model works fine if the camera have 
square pixel, but if not, we need another parameter, sx, called aspect ratio that divide the 
term (xd – cx). Since most cameras have square pixels, we consider sx = 1.
Figure 7 helps to understand the process to transform the image taken from the camera, Id,
to a new image, Id, similar to the reference image. A point  Pi  in image Id with coordinates 
(xd, yd) maps to an undistorted point (xu, yu). Figure 7(b) illustrates the image without radial 
distortion and the transformation Tu that maps  the point with coordinates (xd, yd) to new 
coordinates (xu, yu). This new image is bigger than Id because the compression due to the 
wide angle lens has been removed, lines in the environment maps to lines in this image.   
In a second step, the point with coordinates (xu, yu) is projected to a new point (xp, yp) in 
image It,. Next section focuses in this projection step.  

4. The Projection Model 

Figure 3 shows and ideal case, where the plane of the pattern is parallel to the camera plane 
and center of the pattern coincides with the optical axis of the camera. A more realistic case 
is illustrated in Figure 7. Conceptually we can assume that a pinhole camera captures the 
undistorted image (a planar image) into the new image It. Since cameras are projective 
devices, a projective transformation is involved. A projective transformation is the most 
general transformation that maps lines into lines (Hartley & Zisserman, 2004). 
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           (a) Input image Id       b) Image Iu without radial distortion   (c) New image It

Figure 7. Transforming the input image 

Using homogeneous coordinates, the class of 2-D planar projective transformations between 
the camera plane and the plane of the undistorted image is given by (Szeliski, 1996) (Hartley 
& Zisserman, 2004) [xp’,yp’,wp’]t = M[xu’,yu’,wu’]t, where matrix M is called an homography 
and it has eight degrees of freedom. For our calibration application, M has the form: 
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Plane and homogeneous coordinates are related by (xp=xp’/wp’,yp=yp’/wp’) and (xu=xu’/wu’,
yu=yu’/wu’). So, a point Pu(xu,yu) in image Iu moves to Pp(xp,yp) in the new projected image It.
Assigning wu’=1, the new coordinates of Pp are given by: 
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And now the projection parameters are p = {m0,m1,m2,m3,m4,m5,m6,m7}.
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5. The Point Correspondences Method 

The goal is to find a set of parameters d and p that transform the distorted image captured 
by the camera, Id, into a new projected image, It, that match the image, Ir, of the calibration 
pattern put in front of the camera. To do that, a set of point correspondences are extracted 
from Id and Ir (see section 5.2 for details). 
Let n be the number of features, (xrk,yrk) be the coordinates of the k-th feature (k=1,...,n) in Ir

and (xdk,ydk) be its correspondence point in Id. From (xdk,ydk) and using eq. 5, we can compute 
(xuk,yuk) and using eq. 6, we can get the coordinates (xpk,ypk) of the projected feature. So we 
have a set of pairs of points C = {<(xr1,yr1),(xp1,yp1)>,...,<(xrn,yrn),(xpn,ypn)>}. 
We formulate the goal of the calibration as to find a set of parameters  = d ∪ p such the 
sum, E, of square distances between projected points and reference points is a minimum, 

exk = xp( ,xdk,ydk) - xrk

eyk = yp( ,xdk,ydk) - yrk
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5.1 Non-Linear Optimization 

The Gauss-Newton-Levenberg-Marquardt method (GNLM) (Press et al., 1986) is a non-
linear iterative technique specifically designated for minimizing functions which has the 
form of sum of square functions, like E. At each iteration the increment of parameters, 
vector , is computed solving the following linear matrix equation: 

 [A+ I] =B (8) 

If there is n point correspondences and q parameters in , A is a matrix of dimension qxq
and matrix B has dimension qx1 and =[ 1, 1,..., q ]t.  is a parameter which is allowed 
to vary at each iteration. After a little algebra, the elements of A and B can be computed 
using the following formulas, 
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In order to simplify the notation, we use xp instead of xpk and yp instead of ypk. Then, 

ipx θ∂∂ /  and ipy θ∂∂ /  for )( p
i Θ∈θ  can be derived from eq. 6, 
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Where D = m6xu + m7yu + 1. Partial  derivatives of distortion parameters are derived from eq. 
5 and two applications of the chain rule, 
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Finally, the last set of formulas are derived from eq. 5, 
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Where rd was defined previously in eq. 5.  
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Next section describes how to compute feature points from each image, as well as their 
correspondences automatically. 

5.2 Selecting Feature Points

As we can see in Figure 6(a), the image has white squares over a black background. As 
robust feature points we select the center of mass of each one of the white squares (or 
distorted white squares) of both images. The mass of each pixel is its gray level in the range 
[0-255] (0 for black pixels and 255 for white pixels). 
In the implementation, once a white pixel is found (considering a given threshold), its 
cluster is identified visiting its neighbours recursively, and the center of mass is computed 
from all pixels in the cluster. 
To compute automatically point correspondences, we assume that the array of white 
squares in each image is centered, specially in the case of the image from the camera. In this 
way, bad clusters (for instance when the camera capture some white areas outside of the 
calibration pattern) can be eliminated because the good clusters are closer to the image 
center.  This is not a problem with the reference pattern, because we use the perfect graphic 
file of the image and there are no bad clusters of white pixels.  
We also assume that the image from the camera does not have a significant rotation, relative 
to the reference image, so relative positions of white squares hold in both images. For 
instance, the top left-most white square is the closest square to the top-left corner of the 
image.

5.3 Computing Corrected Images 

If we compute a set of parameters  we are able to map a point (xd,yd) into a new projected 
point (xp,yp). But to compute a new image It we need the inverse mapping: to set the pixel 
value with integer coordinates (xp,yp) in It, we need to compute the pixel value with 
coordinates (xd,yd) in the distorted image Id.
It is easy to compute (xu,yu) given (xp,yp) and the homography M. In homogeneous 
coordinates, [xu’,yu’,wu’]t = M-1 [xp’,yp’,wp’]t.
However, it is harder to compute (xd,yd) given (xu,yu). There is no a direct way to solve this 
problem. To solve it, we use the binary search algorithm. Our goal is to find rd given ru2 =
(xu-cx)2+(yu-cy)2, k1, k2 and k3. Once rd has been found, xd and yd are easily computed using eq. 
5. (xd = (xu-cx) / f2(rd 2) + cx  and yd = (yu-cy) / f2(rd 2) + cy). From eq. 4, we formulate a new 
function f:

 f(rd) = ru –rdf2(rd2) = ru –rd(1+k1rd2+k2rd4+k3rd6) (14) 

If xu=cx and yu=cy, from eq. 5 we have xd = xu and yd=yu. If xu cx and yu cy, we need to find a 
low limit, rd0, and high limit, rd1, such that f(rd0) > 0 and f(rd1) < 0. With these limits, the 
binary search algorithm is able to find the right rd  such  that f(rd)=0 (or very close to zero) 
and then ru = rd f2(rd 2).
If xu cx and yu cy then ru>0 and f(0) > 0, so we have the low limit  rd1= 0. To find the high 
limit rd1 we iteratively increment rd until f(rd) < 0. 
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5.4 The Calibration Process 

The calibration process starts with one image from the camera, Id, another image from the 
calibration pattern, Ir, and initial values for parameters . In the following algorithm,  and 

 are considered as vectors. We start with (cx,cy) at the center of the image, k1=k2=k3=0 and 
the identity matrix for M. The calibration algorithm is as follows: 
1. From the reference image, compute the reference feature points (xrk,yrk), (k=1,...n).
2. From  and the distorted image, compute a corrected image. 
3. From the corrected image compute the set of feature points (xpk,ypk), (k=1,...n).
4. From (xpk,ypk)(k=1,...n) and  compute (xdk,ydk)(k=1,...n).
5. Find the best  that minimize E using the GNLM algorithm: 

(a) Compute the total error, E( ) (eq. 7). 
(b) Pick a modest value for , say =0.001.
(c) Solve the linear system of equations (8), and calculate E( + ).
(d) If E( + ) >= E( ), increase  by a factor of 10, and go to the previous step. If 

grows very large, it means that there is no way to improve the solution .
(e) If E( + ) < E( ), decrease  by a factor of 10, replace  by + , and go to step 

5a.
6. Repeat steps 2-5 until E( ) does not decrease. 
When =0, the GNLM method is a Gauss-Newton method, and when  tends to infinity, 
turns to so called steepest descent direction and the size of i tends to zero. 
The calibration algorithm apply several times the GNLM algorithm to get better solutions. 
At the beginning, the clusters of the distorted image are not perfect squares and so point 
features can not match exactly the feature points computed using the reference image. Once 
a corrected image is ready, point features can be better estimated. 

6. Related Approaches 

There are two kinds of calibration methods. The first kind is the one that uses a calibration 
pattern or grid with features whose world coordinates are known. The second family of 
methods use geometric invariants of the image features like parallel lines, spheres, circles, 
etc. (Devernay & Faugeras, 2001). 
The method described in this paper is in the first family of methods. Feature point 
correspondences are computed automatically. Some other methods require a human 
operator (with a lot of patience) to find such correspondences (Tamaki  et al., 2001). Some 
other registration methods use all pixels of images as features, instead of a small set of point 
correspondences. However these methods need an initial set of parameters close enough to 
the right one and also have problems due to non uniform illumination (Tamaki et al., 2001). 
The main problem when we have a high radial distortion is the accurate detection of 
features. Detect white clusters of pixels is easier than detect lines or corners. Some other 
methods apply the function f1 of eq. (3), computing rd directly from ru. But they tend to fail 
when there is a high radial distortion, as shown in Figure 6. Also, in order to correct images, 
we have to introduce more terms in the distortion model (k1,k2,k3). Other methods use only 
k1 and find a direct solution for rd. However they also fail to model higher radial distortions. 
Other methods (Ma et al. 2003) use a Taylor expansion of rd instead of rd2. Experimentally 
we found better results using rd2 instead of rd for wide angle lens. 
Once a set of parameters was found using our method, computing each pixel of the new 
image is slow (due to the binary search method). However, in order to process many images 
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from the same camera, that process of finding correspondences between It (the new image) 
and Id (the distorted image) should be done only once. Given such correspondences, the 
bilinear interpolation process is very fast and a new corrected image is computed quickly. 
We have described a calibration method based on the Gauss-Newton-Levenberg-Marquardt 
non-linear  optimization method using analytical derivatives. Other approaches compute 
numerical derivatives (Devernay, 1995; Sten, 1997;  Devernay 2001), so we have faster 
calculations and better convergence properties. 

7. Experimental results 

We test a MDCS2, ½” format CMOS, Firewire color camera from Videre Design with a 
3.5mm C-mount lens. This camera acquire 15fps with resolution of 1280 x 960 pixels. 
The pattern calibration (image Ir), showed in Figure 8(a), was made using the program xfig 
under Linux. The image taken by the camera is shown in Figure 8(b). The corrected and 
projected image, using our point correspondences method, is shown in Figure 8(c), a very 
good result. The GNLM process was applied twice, requiring 6 iterations in the first case 
and 108 iterations in the second case. The error E after the first GNLM search was 1.706x105

and at the end of the second search it was 1.572x105. It is interesting to compute the 

maximum individual distance between points ( )22

ii yxi eed +=  to see the maximum 

individual error. Using this criteria, at the end of the process we got dimax = 1.86 pixels. The 
final parameters found are listed in Table 1. 

Figure 8. The calibration process 
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Finally, Figure 9 shows an example of removing distortion using an image of our 
Laboratory.

Figure 9. Original and corrected images 

m0 m1 m2 m3 m4 m5 m6 m7

.0752 .0146 131.0073 -.0132 .0788 115.4594 -.00002 -.000036 

m8 k1 k2 k3 cx cy sx

-.000048 1.2026E-6 -4.2812E-13 6.6317E-18 508.936 625.977 1 

Table 1. Final set of parameters 

8. Conclusions 

We propose a robust method to remove radial distortion from images using a reference 
image as a guide. It is based on point correspondences between the acquired image from the 
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camera (with wide-angle lens) and the reference image. This method is faster than image 
registration methods and it is able to model high radial distortions. Also the selection of the 
center of mass of clusters of white pixels within images, as point features, are easier to detect 
than lines or corners. Another advantage of this method is its good convergence properties 
even starting with a set of parameters that no introduces any distortion. 
This method was implemented in Linux and it is available online1, using the C language and 
standard routines from the Free Gnu Scientific library (GSL) to solve the linear system of 
equations and to find the inverse of matrix M.
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1. Introduction 

1.1 Soft Computing

Soft computing is a collection of intelligent techniques working in a complementary way to 
build robust systems at low cost. Soft computing includes techniques such as neural 
networks, fuzzy logic, evolutionary computation (including genetic algorithms) and 
probabilistic reasoning (Wang and Tang, 1997).  These techniques are capable of dealing 
with imprecision, uncertainty, ambiguity, partial truth, machine learning and optimization 
issues we usually face in real world problems.  
Soft computing addresses problem solving tasks in a complementary approach more than in 
a competitive one. Main advantages of soft computing are: i) its rich knowledge 
representation (both at signal and pattern level), ii) its flexible knowledge acquisition 
process (including machine learning and learning from human experts) and iii) its flexible 
knowledge processing. These advantages let us to build intelligent systems with a high 
machine intelligence quotient at low cost. Soft computing systems have already been 
applied in industrial sectors like aerospace, communications systems, robotics and 
automation and transport systems (Dote and Ovaska, 2001).  

1.2 Robotic Vision

Vision, as an exteroceptive sensor, enables autonomous systems to complete complex tasks 
where environment information is needed. Robotic vision is used in a set of robotic tasks 
like local and global map building, reactive navigation, topological navigation, object 
tracking, visual servoing and active sensing among others (de Souza and Kak, 2002). Most of 
these tasks include a pattern recognition component. In each of these tasks the robot needs 
to process large amounts of data at a fast rate in order to satisfy real time operation 
constraints (Barnes and Liu, 2002). Another fact to take into account is the presence of 
different perturbations in the signals acquired by the robot. At each run, the robot acquires 
essentially different information even if real life test conditions are very similar. For 
example, in outdoor environments, sun and clouds can provoke very significant 
illumination changes in the images, difficulting then to achieve the expected performance of 
the vision algorithms. To cope with these uncertainties, soft computing techniques have 
been used because its robustness when facing this kind of scenarios.  
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1.3 Soft Computing Applications in Robotics and Vision 

Soft computing has been widely used in robotics and vision applications. Fuzzy logic is 
mainly used in robot control and in the pattern recognition issues arising from robotic tasks. 
Robot control is particularly addressed by fuzzy logic because we can specify the desired 
behavior for a system in terms of rules. For example (Saffioti, 1997) presents how to apply 
fuzzy logic in robot navigation.  Another example of fuzzy logic for autonomous vehicle 
navigation is the FUZZY-NAV project (Pan et al., 1995).  Fuzzy pattern recognition uses 
patterns and models where a given degree of uncertainty, imprecision and inaccuracy is 
included in the form of associative rules. For example, in human robot interaction, gesture 
and faces need to be recognized. These kinds of objects are very difficult to characterize in 
terms of features or relations in a statistical way. That is what makes interesting to use fuzzy 
systems to incorporate uncertainty handling.  (Buschka et al., 2000) have proposed the 
detection of fuzzy landmarks for map construction. Similar applications have been also 
proposed by (Bloch and Saffioti, 2002; Gasós and Saffioti, 1999) where map building is 
addressed.  
Neural networks are useful when we have only some examples of the behavior we want to 
incorporate on a system. In robotics, NAVLAB is a project where neural networks were used 
to steer an autonomous vehicle (Pomerleau, 1994).  Another application for neural networks 
in robotics concerns denoising techniques for images or even in control applications where, 
from a set of input-output pairs, neural networks are capable of approximating control 
surfaces whose behavior we try to emulate.   
Genetic algorithms are well suited for optimization problems where we have some cues 
about desired performance that we can encode in a fitness function. This kind of scenario 
arises when detecting landmarks or artificial shapes in the robot environment. Another 
application for genetic algorithms in the robotics domain concerns the path planification 
issues where the trajectory search space can be verified faster than by brute force 
approaches or randomized searches.   
Detailed discussions on soft computing approaches are given in a number of texts. Neuro-
fuzzy algorithms are presented in (Pal and Mitra, 1999), (Mitra and Hayashi, 2000) and 
(Buckley and Hayashi, 1994). (Herrera and Verdegay, 1996) also include the GA and their 
relation with other soft computing algorithms. The intelligent systems development is 
covered in (Ovaska, 2004) and (Abraham et al., 2002).  
In this work, we present three robotic vision applications where soft computing techniques 
are a crucial component for the success of our application. Firstly, we will present a fuzzy 
color tracking system where color is represented by means of membership functions and 
fuzzy rules to aggregate color information in the CIELab space. A second system presented 
here concerns a genetic algorithm based approach for the detection of parametric shapes in 
images acquired by a mobile robot. A third example includes the hybridization of two soft 
computing techniques, we present a geno-fuzzy controller used for the servo-control of a 
pan and tilt camera. For all three methods we present the specific soft computing aspects of 
their implementation both in simulation platforms and in a robotic platform named 
XidooBot, a P3AT robot (Fig. 1.).  
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Fig. 1. XidooBot, a Pioneer P3AT robot used as our experimental test bed. 

2. Fuzzy Color Tracking 

2.1 Tracking System Components 

A high level task for autonomous robot navigation is visual object tracking. This capability 
is used to avoid collisions or to self-localize by using visual landmarks. Almost all visual 
tracking systems follow the block diagram shown in Fig. 2. These systems process the visual 
information acquired by a camera in order to locate a target in the image. 

  Real world
  (environment)

 Image 
Acquisition

   Object
Selecction

       Object 
Representation

Initialization

Target
Search

 Search Target Zone
       Definition

  Position Target
Prediction for k + 1

Target Represetation
        Update

k = 0

k > 0

Training

Fig. 2. Block diagram for a general system for target tracking. We use a fuzzy logic-based 
approach to model the color of the target. 

The initialization phase requires using a model to represent the target. The search step 
requires defining similarity measures to detect it along the visual sequence. Generally, the 
target representation defines the way in which the comparisons are made.  There are several 
cues to represent the target, among them color is one that has been successfully used on real 
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time applications (Nummiaro et al., 2003; Argyros and Louriakis, 2004). Robustness of a 
visual object tracking system relies in the target representation. In this way, we have 
combined color and fuzzy logic to represent targets (Vertan et al., 2000; Montecillo-Puente et 
al., 2003), and here we present a fuzzy color tracking system. We use fuzzy logic in order to 
separate color components and color attributes, like illumination (Keller and Matsakis, 
1999). Our main concern is to solve the illumination problems because in real applications 
illumination changes very often and that appears as if the target was changing its visual 
appearance.

2.2 Fuzzy Color for Object Representation 

Color is one of the features most oftenly used to represent objects. But this feature has some 
inherent problems, mainly the representation of color in an optimal way. By optimal way 
we mean to be capable of distinguish between different and similar colors, i.e. red and blue 
or light red and dark red, respectively.  Due to changes in illumination it is possible that a 
color passes from a light one to dark one, so in real time tracking it is necessary to update 
the actual representation for color. In this way, the well known problem of saturation also 
arises due to illumination conditions.  These are the topics covered in this section. First we 
define the fuzzy color and then we describe the procedure to update the fuzzy color. 

2.2.1 Fuzzy Color 

In order to represent a target by color, we assume that it is monochromatic, that is, it is 
composed by a set of visually homogeneous pixels, i.e. the target appearance is composed of  
pixel with intensity values very close in a given color space. The goal is to represent this set 
of color pixels visually homogeneous, in some way. That is a common situation in real 
applications due to illumination sources and video cameras noise. In order to represent 
these color pixels, it is necessary to select a color space. We have selected the CIELab color 
space because in such model visually similar colors have close color coordinates; 
additionally it possesses a luminance component. The two chromatic components of this 
space are named, a and b, and the luminance component, L (Braum et al., 1998). Fuzzy color 
is the assignation of convenient fuzzy sets to each color component. The procedure to define 
them is as follows: 

1. Assume we have a set of visually homogeneous pixels in the RGB color space, pi

with color components piR, piG  and piB.
2. Convert all pixels, pi, to the CIELab color space obtaining color components piL, pia

and pib.
3. Compute the normalized histogram to each component. 
4. Adjust a membership function to each histogram. We may use triangular, 

trapezoidal or Gaussian ones. 
5. The membership functions define the fuzzy sets attached to the set of pixels. That is 

μL, μa and μb are the membership functions for the components L, a and b
The fuzzy representation of the set of color pixels is given by these membership functions. 
For deciding if a particular pixel p belongs to the set of pixels (or target) we evaluate the 
following fuzzy rule 

if (  and  and ) then  is the targetL a bR R R p  (1) 
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where RL, Ra and  Rb  are defined as  

:  belongs to color component  of the target

:  belongs to color component  of the target

:  belongs to color component  of the  target

R L LL p
R a aa p
R b bpb

 (2) 

and Lp, ap and bp are the CIELab components of the pixel p. Let be CL, Ca and Cb the 
membership values of RL, Ra and Rb  for the pixel p, respectively. That is, CL = μL(Lp) , Ca = 
μa(ap) and Cb = μb(bp). Finally, we define truth value for the rule (1), Cp,, which expresses how 
much the pixel p belongs to the set of pixels (or target), as 

min( , , )p L a bC C C C=  (3) 

For the case in which the target is non-monochromatic, e.g. the target is composed by dark 
red and yellow, we apply the above procedure for defining fuzzy sets to each set of colored 
pixels. That is a problem because, in general, we do not know how many colors there are 
and obviously we do not know also the set of colored pixels corresponding to them. We can 
use in this case some method for determining the number of colors and the set of pixels 
attached to it, i.e. the Mean Shift procedure (Comaniciu et al., 2000). Once we have the 
number of colors and the corresponding set of pixels attached to each of them. We apply the 
above procedure for each color. So we define, for a non-monochromatic target composed by 
k different colors, its representation as follows: 

1 1 1 (     ) 

...  (     )  

...  (     )

if R and R and RL a b
i i ior or R and R and RL a b
k k kor or R and R and RL a b

 (4) 

where RiL, Ria and Rib are defined as (2) for the color i.   
So the truth value for a pixel p, with Lp, ap and bp CIELab components, now is given by 

1 1 1max(min( , , ),...,min( , , ),..., min( , , ))p
i i i k k kC C C C C C C C C CL a L a L ab b b=  (5) 

where the expression min(CiL, Cia, Cib)  represents the truth value of the pixel p for the color i.
Then, we define on Cp a fuzzy set with a triangular membership function spanned over      
[0, 1]. Finally, we form the region of the object by applying an α-cut to all pixels into the 
search region.  

2.2.2 Fuzzy Color Update 

In real conditions the target changes its color components, mainly due to illumination 
variations. Some times it is not a crucial problem because the fuzzy representation of color 
absorbs them, for example in indoor environments. But some times there are big changes in 
color components what makes impossible to detect the target, specifically in outdoor 
environments. Generally, a big change does not occur instantaneously. So we can use these 
gradual changes to update the membership functions of the color components.  
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To update the membership functions we illustrate our procedure by using triangular ones as 
in Fig. 3. These functions are determined by three parameters p0, p1, and p2.  These 
parameters are known after target color modelling. Now we focus only on p1, assuming that 
distances from p1 to po and from p1 to p2 are constants.  Let be Rα the set of pixels which are 
classified as the target, with pi ∈ Rα. We could compute the mean of the color components on 
this set, that is  

1
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where NRα is the cardinality of Rα. We change the centers of the memberships by adding  

)( 11 L
LL Ipp −=Δ γ  (9) 

)( 11 a
aa Ipp −=Δ γ  (10) 

)( 11 b
bb Ipp −=Δ γ  (11) 

with p1L, p1a and p1b being the membership centers for the L, a and b components, 
respectively and γ  is a smoothing constant. 
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Fig.  3. Triangular membership functions. 

2.3 Performance Evaluation 

In order to evaluate the fuzzy representation we have performed the following test: In an 
OpenGL environment simulator, we have set a red ball with a varying light source, then we 
have moved the ball along a circular path and we have made controlled illumination 
changes in our environment. In this test we know the ground truth of the center position of 
the ball in each image. We save an image sequence and the ball position at each image of 
this sequence. If the error position in each image is small and the number of pixels 
composing the detected object is almost constant, we can say that our fuzzy color 
representation is good. In order to show that, we apply a fuzzy color tracking having the 
test image sequence described previously as input. In Fig. 4, we present an image and the 
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corresponding detected color blob. In Fig. 5, some frames of the sequence are shown and 
also the detected blob that satisfies the fuzzy color model. In Fig. 6, we present the position 
error between the exact ball position in the test image and the position detected by our color 
tracking system. We observe that maximum error is between 4 pixels. We can consider this 
error as a low one, that is, our tracking method has a good accuracy.  

Fig. 4. A pair of images showing the ball in the simulated environment and the region where 
the object is detected by our tracking system satisfying the fuzzy color constraints. 

Fig. 5.  Test image sequence and the detected region using a fuzzy color representation. 
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Fig. 6. Graph of the error position between the ground truth image position for the target 
and the detected position by the fuzzy color tracking system. 
In Fig. 7, we show a graph of the number of pixels correctly detected along the frames of the 
sequence. We can observe that, between frames 30 and 40, there is a transient in the number 
of pixel detected as belonging to the object. That is caused by the fuzzy color adaptation.  An 
explanation for this behavior is related to the edges of the ball. When the image is lighter, 
the ball has a good contrast against the background. In the other hand, when light turns 
dark that effect diminishes. An outdoor sequence taken from the described system 
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implemented in XidooBot, our robotic platform is shown in Fig. 8. The computing time for a 
tracking cycle is 0.08 seg, that results in a 12.5 Hz frame rate. 
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Fig. 7. Graph of number of pixels detected. 

Fig. 8. Some frames of an outdoor image sequence where a girl is kicking a yellow soccer 
ball.

3. Object Recognition using Genetic Algorithms 

Genetic algorithms (GA) are pseudo-random search techniques inspired from evolutionary 
processes. We start from an initial set of feasible solutions for a problem and by mimicking 
natural evolution, best solution individuals survive and they are the basis of new 
populations of solutions. This evolutionary cycle is repeated until a solution satisfying 
problem constraints emerge. GAs are optimization methods; they are useful when we need 
to search through a large number of feasible solutions. Solutions are evaluated to determine 
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which ones are the best suited to the problem by using a fitness function that encodes the 
knowledge we have about the nature of the solution of our problem.  In robotics, GA have 
found application in path planning problems for a robotic arm (Ahuactzin et al., 1993), path 
planning for mobile robots (Gerke, 1999) and  for estimating the position of a mobile robots 
(Kang et al. 1995).  Specifically, genetic algorithms are useful to find a good solution in large 
search spaces because they can avoid local minima by using genetic operators like mutation, 
that help the GA to probe in practically every region of the search space. Other GA-based 
applications in robotics are in visual landmark detection tasks (Hao and Yang, 2003, Mata et 
al., 2003). 
In our work, we present a GA-based circle detector. Our system uses a three edge point 
circle representation that enables the system to reduce the search space by eliminating 
unfeasible circle locations in our image. This approach results in a sub-pixellic circle detector 
that can detect circles in real images even when the circular object has a significative 
occluded portion. For robotic applications, these circles could be issued from circular 
landmarks or even being a part of the landmark. After benchmarking our algorithm with 
synthetic images, we have tested our algorithm on real world images.  We present the 
results of both cases. The latter implementation has been tested on a mobile robot platform 
XidooBot for circular landmarks detection on the robot environment. 

3.1 Circle Detection using GAs 

Shape detection is needed in robotic vision tasks like object tracking, visual servoing or 
landmark recognition. In addition to color and texture, shape is an important cue for 
modelling objects in scenes of the robot workspace. Object location techniques are solved 
using two types of methods: i) deterministic methods like Hough transform, e.g. (Yuen et 
al., 1990), geometric hashing and template or model matching, e.g. (Iivarinen et al., 1997; 
Jones et al., 1990) and ii) stochastic tecniques, including RANSAC (Fischer and Bolles, 1981), 
simulated annealing and genetic algorithms (Roth and Levine, 1994). 
Using GAs to detect shapes in an image involves mainly the making of design choices for 
the solution elements in a genetic algorithms framework. We work on images containing 
one or several circles. The circles are searched through the edge image obtained from an 
image pre-processing step. A classical Sobel edge detector was used for this purpose. In the 
following paragraphs we show how to pose the circle detection problem in terms of a 
genetic algorithm approach.  

3.1.1 Individual Representation 

Each individual C uses three edge points as chromosomes. Edge points are represented by 
their relative index in a list V of all the edge points resulting from the edge extraction step. 
Each individual represents then a feasible circle where their 0 0( , , )x y r parameters are 
defined as follows: 

2 2 2( ) ( )0 0x x y y r− + − =  (12) 

with: 
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and

( ) ( )0 0r x x y y= − + −  (15) 

We can then represent the shape parameters (for the circle, [x0, y0, r]) as a transformation T
of the edge vector indexes i, j, k.

[ ] ),,(,, 00 kjiTryx =  (16) 

This approach enables us to sweep a continuous space for the shape parameters while 
keeping a binary string for the GA individual. We can then reduce the search space by 
eliminating unfeasible solutions.  

3.1.2 Fitness Evaluation 

Each individual has a fitness proportional to the number of actual edge points matching the 
locus generated by the parameters of the shape 0 0( , , )x y r . In our practical implementation, 
we can not test for every point in the feasible circle so we perform a uniform sampling along 
the circumference. If we take sN  points, we construct an array of points ( , )i i iS x y= . Their 
coordinates are given by: 

2cos0
ix x ri Ns

π= + ⋅  (17) 

2sin0
iy y ri Ns

π= + ⋅  (18) 

Fitness function F(C) accumulates the number of expected edge points (i.e. the points in the 
set S) that actually are present in the edge image. That is: 

1

0
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i
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==  (19) 
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We use also some other factors to favor the context of specific applications for detection, 
including completeness of the circumference or a given size for the circles.  

3.2 Performance Evaluation 

We have carried up three tests to evaluate the performance of our approach to circle 
detection. Firstly, we have generated 10 synthetic grayscale images with only one circle in 
them and where the ground truth of the circle parameters was known a priori. Our method 
has been run 100 times on each image and the results were recorded in Table 1. We can see 
that our algorithm detects the circle parameters with sub-pixellic accuracy (lower than 0.194 
pixels for the center coordinates and radius length). Our method is robust with respect to 
translation and scale. Average elapsed time to detect a circle in an image containing exactly 
one circle is 5 ms.   
We have also studied the behavior of the elapsed time for detection of our algorithm with 
respect to the circle radius. As expected, time seems to grow at a quadratic rate with respect 
to the radius of the circle. That can be seen in Fig. 9.  

Img. Time Position x y r Error |ex| |ey| |er|
Real 90.00 198.00 10.00 avg 0.046 0.023 0.023 1 0.003
Detected 89.95 197.98 10.02 max 0.046 0.023 0.023 
Real 35.00 28.00 17.00 avg 0.052 0.042 0.052 2 0.001
Detected 34.95 27.96 17.05 max 0.056 0.056 0.056 
Real 167.00 14.00 10.00 avg 0.069 0.023 0.069 3 0.000
Detected 167.07 13.98 10.07 max 0.103 0.035 0.104 
Real 38.00 221.00 28.00 avg 0.003 0.005 0.013 4 0.004
Detected 38.00 220.99 28.01 max 0.005 0.009 0.018 
Real 76.00 44.00 28.00 avg 0.001 0.005 0.013 5 0.025
Detected 76.00 44.01 28.01 max 0.009 0.022 0.018 
Real 184.00 82.00 24.00 avg 0.110 0.077 0.118 6 0.000
Detected 184.11 81.92 23.88 max 0.144 0.126 0.126 
Real 133.00 38.00 10.00 avg 0.014 0.018 0.035 7 0.001
Detected 133.01 38.02 10.03 max 0.044 0.059 0.050 
Real 233.00 108.00 11.00 avg 0.101 0.117 0.171 8 0.001
Detected 233.10 107.88 11.17 max 0.194 0.160 0.194 
Real 120.00 126.00 69.00 avg 0.001 0.001 0.009 9 0.484
Detected 120.00 126.00 69.01 max 0.029 0.009 0.019 
Real 217.00 82.00 20.00 avg 0.068 0.150 0.086 10 0.001
Detected 216.93 81.85 20.09 Max 0.068 0.150 0.086 

Table 1. Circle detection results on synthetic images containing a single circle.  
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Fig. 9. Time needed to find a single circle in an image against its radius. 

3.3 Application to Robotic Vision Tasks 

We applied the circle detection method for a robotic task. We have used it for the detection 
of artificial landmarks containing circular forms. Our interest is to develop a system that 
uses elliptical shapes (now only covering circular shapes) for using them as landmarks in a 
topological navigation task. Such a system will be similar to other systems that use 
quadrangular planar landmarks (essentially posters) for the same task. We consider only 
quadrangular and circular shapes as structurally salient in a semi-estructured environment. 
The entire circular landmark recognition process uses two processing loops. The circle 
detection task achieves a processing rate of about 5 Hz and it interacts with the color 
tracking system already described that runs at about 13 Hz. The circle detection is launched 
at the beginning of the navigation task and then it is relaunched only when the robot fails to 
perceive the detected landmark.  This situation arises when the robot is in transit from a 
topological place to another. Fig. 10 shows some typical images acquired by our mobile 
robot with circular landmarks on them. An example of an image with multiple circles and 
the results of the detection process are shown in Fig. 11. 

(a)                   (b)              (c)         (d)
Fig. 10. Typical scenarios where circular landmarks are useful. 
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4. Geno-Fuzzy Visual Servoing 

We present a genetic algorithm optimization approach for a visual servoing system using a 
fuzzy controller for an active camera. Visual task for the camera is to center an object with a 
known model in the field of view of the camera. Our system implements the 
two-dimensional controller by multiplexing a fuzzy controller for only one motion axis of 
the camera. We have simulated our system and obtained the controller response to different 
inputs. We have studied four cases for comparison purposes: a proportional controller, a 
trial and error tuned fuzzy controller, a fuzzy controller using a genetically-optimized rule 
base and another one with a database optimization using genetic algorithms.  

(a)     (b) 

(c)     (d) 

Fig. 11. Results of the circle detection process in a poster with several circles: (a) the original 
image, b) the edge image of (a), (c) the best 5 circles found by our algorithm overlaid on (a), 
and (d) the detection results overlaid on the edge image. 

We take advantage of the collaborative approach of soft computing for problem solving by 
combining genetic algorithms and fuzzy logic in a visual servoing controller. In the 
following paragraphs, we will describe current approaches and applications for 
hybridization of fuzzy and genetic techniques (so named geno-fuzzy techniques) and some 
of their applications.  

4.1 Visual Servoing  

Visual servoing is a maturing approach for controlling robots. It uses a visual task 
specification instead of using a Cartesian coordinate system previously taught to the robot 
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(Corke and Hutchinson, 2000). Most robotic systems are instructed interactively to reach 
some important points for a particular task. Robot task consists in the optimization of the 
path for all the points not already taught. Using visual servoing, information acquired by 
the visual sensors of the robot is used to control robot motion in manipulators or mobile 
robots. Flexibility of robot use is increased in this way, in particular when the robot has to 
interact with some other objects in its workspace (parts to handle, obstacles to avoid, etc.) A 
visual servoing system includes techniques from computer vision, robotics and control, and 
could be considered as a fusion of these disciplines.  
According to Corke and Hutchinson, visual servoing systems can be classified in two types:  
i) image-based visual servoing (IBVS), where error is measured directly on the image and 
mapped into actuator control signals, and ii) position-based visual servoing (PBVS), where 
vision techniques are used to reconstruct the 3D environment where the robot evolves and 
then an actuator control is computed from the error obtained from such an information.  
For the PBVS systems, a calibration step needing vision techniques and geometric models is 
required. In IBVS systems, control computations involve computation of the system 

Jacobian matrix vJ , a linear transformation that maps the end effector velocity 
•
r  into the 

motion of some image feature 
•
f :

( )v

• •
=f J r r  (20) 

Simplest approach to visual servoing uses the control law that assumes a square and 
non-singular Jacobian matrix: 

1( )v

•⋅
−=u J r f  (21) 

A soft computing approach has been the use of fuzzy logic and neural networks to avoid the 
computation of the Jacobian matrix, as done in (Suh and Kim, 2000) (Stanley et al., 2001), 
where a fuzzy rule optimization is performed by training a neural network. In this work, we 
propose to use geno-fuzzy learning techniques to optimize an image-based fuzzy visual 
servocontroller.

4.2 Geno-Fuzzy Techniques  

A highly useful soft computing technique for implementing controllers is fuzzy logic. As 
pointed out in (Klir and Yuan, 1995), fuzzy logic controllers have advantages over 
traditional controllers when i) the system to be controlled is complex, ii) the system has been 
traditionally controlled by human experts, or iii) when human input is needed in the 
controller model. A fuzzy controller is composed of several basic elements. The fuzzifier 
translates numerical input into fuzzy values for linguistic input variables. A fuzzy 
knowledge base is composed of two parts: i) a database, where information about fuzzy 
membership functions for the input and output linguistic variables used by the system are 
stored and, ii) a rule base, where rules that determine the controller behavior are stored. 
This knowledge is used by the fuzzy inference engine to compute a fuzzy output at each 
instant. Fuzzy output is converted into a numerical output value by means of a defuzziffier.  
It is also known that the main drawback of fuzzy controllers is their need of a more complex 
tuning procedure than for conventional controllers. Building the knowledge base of a fuzzy 
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system can be done by four methods (McNeill and Thro, 1994; Cordón and Herrera, 1995):  
i) Synthesis of expert knowledge, ii) trial and error synthesis procedures, used in this work 
for obtaining an initial or primitive model, iii) synthesis from numerical evidence, and iv) 
use of machine learning techniques. In this work, a genetic algorithm-based approach is 
used for tuning the primitive model of the fuzzy visual servocontroller.  
Genetic programming, particularly, genetic algorithms, are used to optimize a fitness 
function by mimicking natural evolution for organisms. Individuals for this evolution are 
computational representations of potential solutions for the problem to be solved. Each 
individual is represented as a binary string also known as a computational chromosome. 
The entire set of individuals examined at a time is called the population.  
Geno-fuzzy systems, as is called the combination of genetic algorithms and fuzzy logic 
controllers, are feasible because in one hand, the behavior of a fuzzy controller is 
determined by a set of parameters included in the controller knowledge base. Optimal 
parameter search for the fuzzy controller defines a complex search space. In the other hand, 
this type of search spaces can be handled efficiently using genetic algorithms. Therefore, 
fuzzy logic and genetic algorithms could be used to design and optimize fuzzy controllers 
by formulating optimal parameter search as a genetic algorithm problem.  
Pioneering work on geno-fuzzy systems has been done by Karr. He has been the first one to 
propose fuzzy set parameter tuning for a fuzzy controller (Karr, 1991). (Herrera and Cordón, 
1997) have proposed another methodology for genetic algorithm based optimization of a 
fuzzy controller and its application to the inverted pendulum problem. In robotics, 
geno-fuzzy techniques have been applied for the control of manipulators as in the work of 
(Jin, 1998) and a hierarchical fuzzy controller for the navigation of an outdoor mobile robot 
proposed by (Hagras et al., 2001).  Geno-fuzzy systems enable us to develop automatic 
design methods for fuzzy controllers. This procedure can be applied for automatic design or 
optimization methods.  

4.3. Fuzzy Visual Servoing  

We have implemented a visual servoing system using a fuzzy controller to map image 
features into camera control commands. In a first step, we have synthesized the controller 
by trial and error and we have compared its performance against a proportional controller 
for a target recentering task. In order to cope with complexity in the fuzzy controller rule 
set, we propose a multiplexed fuzzy controller. Secondly, we have optimized the fuzzy 
controller by using genetic algorithms. We have analyzed two cases: i) Adaptation of the 
fuzzy rule set, and ii) scaling of a constant gain in inputs and output of the fuzzy controller. 
We consider a recentering task for an active camera to follow a given target with a known 
model moving on a vertical plane. Visual servoing is needed to perform this task. Fig. 12 
depicts the implemented system.  
In such an IBVS system, the position estimation is computed directly from the last image 
acquired by the robot. Position error is then computed from the comparison of the reference 
image rI  and the current image cI . We also compute an estimate for target velocity. These 
variables are then fuzzified and input to a fuzzy controller. The controller computes actual 
commands to be sent to the camera in order to center the target in the camera image.  Inputs 
to our fuzzy controller are positioning error e  and current target velocity v . Both variables 
are vector quantities with x and y components. Output variable for our controller is the 
velocity correction oV . The components of this velocity vector are pan displacement velocity 
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oxV  and tilt velocity oyV  for the camera. The structure selected for our controller 
implementation was a multiplexed one. We have chosen to decouple the x-y controller into 
an x-controller and a y-controller. Each of them controls only one degree of freedom of the 
active camera. At each iteration of the control loop, we compute the x-controller output and 
then the y-controller output. By making this design choice, we have reduced complexity 
without sacrifying too much accuracy in the controller performance.  Structure for our fuzzy 
controller is shown in Fig. 13.  
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Fig. 12. Fuzzy visual servoing loop. 
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Fig. 13. Multiplexed fuzzy visual servocontroller. 

Our system is modelled by a fuzzy logic controller with input universe  U , output universe 
V , and a set of IF-THEN rules that determine a mapping  nU VR R∈ → ∈  . Every rule of 
this set has the form:  

1 21i 2i i::  IF (  is  ) and (  is  ) THEN (  is  ) GF FiR x x y  (22) 

where jiF and iG are fuzzy sets of the input and output linguistic variables, respectively 
(Wang, 1994). We use the singleton fuzzifier and the COA (Center Of Average) method for 
the defuzzification step. We code the knowledge into a BIOFAM (Binary Input-Output 
Fuzzy Associative Memory) matrix where the inputs are the error between the center 
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coordinate of the camera image and the position of the center of the object, and the velocity 
of the object being tracked for a given direction, and the output is the correction needed on 
the camera position.

4.4 Hybridization Approaches for Geno-Fuzzy Controllers 

Learning strategies for fuzzy controllers by using genetic algorithms are classified using 
three main approaches (Cordón et al., 2001):  i) Michigan approach, where optimization is 
carried on particular elements of the fuzzy controller specification, ii) Pittsburgh approach, 
when the system as a whole is optimized, and iii) Iterative Rule Learning (IRL) approach, 
where the system is synthesized by optimizing independent rules that combine fuzzy sets 
from a given rule repository, defined either explicitly or implicitly.  
Michigan approach encodes each rule in a complete chromosome. Only best rules are kept at 
each iteration as elite members of the genetic algorithm population. As pointed out by 
(Ishibuchi et al., 20000), the optimization of the fuzzy rule-based system is indirectly 
performed by searching for good fuzzy rules. Fuzzy rules have generally a pre-defined 
structure and a pre-defined set of fuzzy concepts to be used in these rules.  
Pittsburgh approach (Ishibuchi et al., 1999) involves encoding a complete or partial rule set 
into one computational individual. Optimization by using genetic algorithms is equivalent 
then to find fuzzy rule-based systems with high performance indexes.  
In the IRL approach (Cordón et al., 2001), knowledge acquisition is done by acquiring 
concepts from a repository of fuzzy sets related with input and output linguistic variables. 
Structure is not pre-defined for these rules and even fuzzy sets associated with the linguistic 
labels can be chosen in a flexible way from a repository of known fuzzy sets.  
A common strategy for all three approaches described above is to adapt the fuzzy controller 
database. In this technique, fuzzy membership functions (shape and parameters) are 
individually adapted. In this work, we have tested the database adaptation of a fuzzy 
controller and the Pittsburgh approach for learning a complete rule base as described below.  
In order to optimize our controller, we need to define a fitness function. This fitness function 
usually consists in the evaluation of the controller performance for an interval of time. Fig. 
14 shows a block diagram of the optimization procedure. In our implementation, the fitness 
function is a measure of the controller performance. 
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Fig. 14. Optimization of a fuzzy visual servocontroller by using genetic algorithms.  
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Several performance criteria can be applied in this context. A fitness function that takes into 
account several parameters at the same time according to the controller characteristics to be 
improved can be suggested. Some authors (Zhimin et al., 2000) have been concerned with 
proposing methods for tuning multiple characteristics of the controller. In conformity with 
the nature of our problem, our controller performance is measured using the difference 
between the position of the center of the object to be tracked and the center of the image 
frame, during an interval of time. In order to measure this performance, we use a least 
square method to compute a figure of merit q  as follows:  

max 2
2

,
1 1

( ( ) ( ))
t

i d i
t i

q t tX X
= =

= −  (23) 

where 1( )tX  is the x coordinate of the camera at instant t, 2( )tX  is the y coordinate of the 
camera at same instant and , ( )d i tX  is the true target position for iX  at instant t .
Another issue to be considered is the length of the chromosome in use. For example, this 
length is critical for the execution time of the computer implementation for the mutation 
operation. In this work, we propose two optimization strategies using genetic algorithms: i) 
Genetic adaptation of the rule base, and ii) genetic adaptation of the database by means of 
the scaling functions.  
Pittsburgh approach for complete rule base adaptation  
We specify our fuzzy controller by using a decision table approach. This approach enables 
the entire rule base to be encoded in a single entity or chromosome. Coding takes place as 
follows. We start at the BIOFAM position (1, 1) and each row in the matrix is scanned from 
left to right. Then, the rows are linked together. In order to avoid the generation of a larger 
chromosome each rule is coded into a genetic alphabet using positive integer numbers in the 
[0, n-1] range, where n is the number of fuzzy sets of the output variable. The coding process 
is shown in Fig. 15.  
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Fig. 15. Rule base encoding scheme. 
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Genetic database adaptation approach  
The second optimization method proposed is the coding of the database using scaling 
functions. This method was chosen because the controller behavior can be completely 
modified with just three real numbers. These numbers are a scaling factor for the input 
variables or, from the control point of view, a gain. An integer representation for each data 
is used for coding these real numbers. Each number is mapped into an integer value range 
from -32768 to 32767.  The gain range is [0, 2], therefore, the precision for mapping into an 
integer representation is 3.0517578× 10-5. In this form, each real number represents a specific 
gain for each section of the controller. Thus, each gain value is coded into an integer 
interval, coded in a binary form. Any real number is then represented by a binary string 
with 16 bits. There exist 6 possible gain constants to be modified in the controller. Choosing 
the values to be modified or grouped is an important decision to make. Working with the 6 
gains will lead to a larger chromosome and as a consequence, to a more complex search 
space, and accordingly, the algorithm will take a longer time to find a good solution.  

4.5 Tests and Results 

We have developed a graphical simulation environment in C language. In this environment, 
we simulate the x-y plane where the target moves and the field of view of the camera. The 
visual task is to center an object in the field of view of the camera. In our work, this object is 
a ball of uniform intensity. We have already developed some libraries to manage fuzzy 
models. We use these libraries to implement the closed loop simulation of our controllers. 
The fuzzy visual servoing algorithm is executed for all the duration of the time interval to be 
simulated. Simulation will be stopped also if the tracked object goes beyond the limits of our 
world simulation.  
We have studied four different controllers for the visual servoing task, namely:  
Case I:  A proportional controller, used only for comparison purposes, implemented as 
proposed by (Corke, 1996).   
Case II:  A fuzzy controller tuned by hand (Perez-Garcia et al., 2003) using a self-developed 
integrated development environment for fuzzy models.   
Case III:  A genetically-optimized fuzzy controller, using a controller rule base adaptation 
approach (Pittsburgh approach).   
Case IV:  A genetically-optimized fuzzy controller, using a controller database adaptation 
approach.
We simulated different motion patterns for the target on the simulation environment. For 
each controller, we have applied some motion patterns for the target to be recentered. 
Results for all different cases will be compared in order to evaluate the controller 
performance when different design strategies are used.  
Case I: Proportional controller.  
Some authors, like (Corke, 1996), have studied problems arising in visual servoing. He has 
pointed out that a proportional controller will exhibit poor performance when used for 
visual servoing tasks. Main problem is originated by the sampling frequency rate that is too 
low. For a real time system, target tracking frequency rates are between 2.5 and 12 Hz. 
When we use a personal computer, tracking execution loop runs at about 4.0 Hz. In order to 
make the simulation more realistic, we have modelled our camera plant as a first-order 
system including some time delay T  and some inertia a . The camera model used is:  
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1( )C s
Ts a

=
+

 (24) 

According to control theory, K, the proportional gain has to be large enough to compensate 
system errors. In a servo-controller, there is a conflict because a large value for K can cause 
the target to get out of the camera view. When dealing with dynamic systems, Corke 
proposes to use small values for K in order to avoid system instabilities. We have computed 
the response for a proportional controller with K =0.15, a common value in visual servoing 
implementations.
Case II: Fuzzy controller tuned by trial and error.  
In this section, we will present simulation results when a fuzzy controller is used for the 
visual servoing task. We have tuned the fuzzy visual servocontroller by a trial and error 
process. We tested different configuration parameters for all the components of our system 
and different motion laws for the target. We have reached a final configuration where 
position error of the target with respect to the center of the acquired image is minimized. 
Input and output ranges were chosen taking into account specification of a Sony EVI-D30 
pan and tilt camera to make a realistic simulation.  
We show the final configuration for input and output variables in Fig. 16. We can see that 
the input variable Error has seven linguistic variables. This fact enables us to achieve a 
better accuracy in the controller output without having a big number of rules in the 
BIOFAM for the controller shown in Table 2. Labels are as follows: NL= Negative Large, 
NM= Negative Medium, NS= Negative Small, ZE= Zero, PS= Positive Small, PM= Positive 
Medium, PL= Positive Large, SM= Small, ME= Medium and LA= Large. 
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Fig. 16. Membership functions for input and output linguistic variables of the fuzzy 
controller tuned by trial and error. 
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Velocity 
Error

ZE SM ME LA 

NL NS NL NL NL 
NM NS NS NS NL 
NS NS NS NL NL 
ZE ZE ZE ZE ZE 
PS PS PS PL PL 
PM PS PS PS PL 
PL PS PL PL PL 

Table 2. BIOFAM matrix for the fuzzy controller. See text for labels meaning. 

We have obtained the controller response to step and ramp inputs. These responses were 
computed when the controller was using the BIOFAM shown in Table 2 and the input and 
output variables defined as in Fig. 16. Results are shown in Table 3. We can see that the 
fuzzy controller outperforms the proportional controller for step input. The fuzzy 
servocontroller presents an underdamped response and a shorter transient time than the 
proportional controller. The former presents an overdamped response. When a ramp input 
signal is used, the proportional controller presents a classical delayed action of the input 
signal. Otherwise, the fuzzy controller shows an almost zero error. This behavior can be 
explained by the fact that we have some prediction step because object velocity is an input 
to the fuzzy controller. This fact enables us to estimate the new positions where the target 
features could appear.  
Case III: Genetically optimized fuzzy controller using Pittsburgh approach  
Here we present our results for a fuzzy visual servocontroller optimized by using the 
Pittsburgh approach over the complete rule set. Figs. 17 (a) and (c) show the error response 
to step and ramp inputs of the fuzzy visual servocontroller after the rule set had been 
optimized. Genetic optimization of the rule base slightly improves the response of the fuzzy 
visual servoing system originally tuned by trial and error. The optimized rule set has a 
better performance when a similar input to the learned one is fed to the controller but it 
degrades its performance when a different type of input signal is used.  
Case IV: Database adaptation by using a linear scaling function  
For this kind of optimization, we have used a gain constant for each input and another for 
the output of the fuzzy visual controller. As we have only one multiplexed controller for 
both x and y axes, we have decided to optimize in parallel the same controller. As for the 
others cases, the optimized servocontroller has been fed with step and ramp inputs. Error 
responses to these inputs are shown in Figs. 17 (b) and (d), respectively. As we can note 
there, there are significant improvements in the visual servocontroller response when 
compared with the other cases. Transient response to step inputs is shorter than for the 
other cases and the static error for ramp input vanishes, something very difficult to achieve 
using conventional techniques as pointed out by (Corke, 1996).  
Performance evaluation comparison for visual servocontrollers  
We have compared the four controllers and the results are summarized in Table 3. We have 
computed maximum error in pixels for step and ramp inputs. In the case of step input, we 
have also computed the settling time in seconds and for the ramp, we have computed the 
steady state static error. We can see that the non optimized fuzzy controller clearly 
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outperforms the proportional controller when both standard inputs are applied. Comparing 
the fuzzy controller performance to the rule base-optimized one, we find that maximum 
error for the last decreases for step input. In the ramp input case, optimized controller 
maximum error increases slightly but steady state static error is negligible.  The fuzzy visual 
servocontroller optimized by using data-base adaptation outperforms all other controllers in 
all cases except for the settling time when a step input is applied. In this case, the 
non-optimized fuzzy controller takes the same time to settle.  
Functional performance evaluation on a robotic platform 
We have tested our fuzzy visual servocontroller on a real time robotic platform. We aim to 
center an object in the image acquired by the vision system of a robot.  The target was 
detected by using Hausdorff distance as the similarity metric on the edge image of a 
sequence. Our system process images up to a frame rate of about 10 frames/sec. Obviously, 
this rate depends largely on the complexity for the edge model of the target. We have 
optimized the frame rate for the visual servoing task by implementing a Monte Carlo 
version of the Hausdorff distance (Perez-Garcia et al., 2006). 
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Fig. 17. (a),(b) Step error response for case III and case IV controllers respectively. (c),(d) 
Ramp error response for case III and case IV controllers respectively. 
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Input Signal 
Step input Ramp input 

Controller type Maximum 
Error

(in pixels) 

Settling 
time
(in s) 

Maximum 
Error

(in pixels) 

Steady state 
static error 
(in pixels) 

Case I: Proportional 16.40 5.25 11.12 11.12 
Case II: Fuzzy 12.00 1.50 0.18 0.17 
Case III: Geno-fuzzy with 
rule base adaptation 4.48 2.00 0.22 0.01 

Case IV: Geno-fuzzy with 
data base adaptation 3.31 1.50 0.16 0.00 

Table 3. Controller performance comparison using different design methodologies for step 
and ramp inputs 

5. Conclusion 

Several conclusions arise from our experience applying soft computing (specifically fuzzy 
logic and genetic algorithms) to develop robotic vision applications. Fuzzy logic is well 
suited for problems where uncertainty representation is a critical issue. We already applied 
fuzzy logic to cope with illumination changes when tracking objects in a visual sequence.  
Another domain for application of fuzzy logic in robotic vision is to use it where only 
qualitative experience is available to perform a function. We have applied it on the 
implementation of a fuzzy visual servocontroller. Genetic algorithms are useful in 
optimization related tasks in robotic vision. For example, we have used this methodology to 
optimize the match between a parametric shape (a circle) and an observed set of edge points 
in an image. Another example of application was the tuning of the fuzzy servocontroller 
cited above by using a least squares criterion over a time frame.  
From a systems perspective, we have used simulation as a tool to benchmark our algorithms 
before implementation on real platforms. We have also used composition of different 
modules to integrate more complex systems. This modular system approach has been 
essential to develop succesful real world applications. 
Concerning our applications, we have proposed three methods to use soft computing 
technologies in robotic vision applications. We address a visual tracking system based on a 
fuzzy color description of the target, a parametric shape detection task using a genetic 
algorithm and a geno-fuzzy visual servoing task. The first two methods are developed using 
a single soft computing technique and the third one uses a hybrid approach by combining 
genetic algorithms and fuzzy logic as the basis of a robotic vision application. For these 
applications, we have developed the main aspects of the systems, their implementations and 
the tests we have carried out to evaluate their performance. Our systems are implemented 
on board of an experimetal robotics platform, namely a Pioneer P3AT robot. We show 
experimental results for all of them in real time applications. 
Of course, soft computing applications on robotic vision tasks could include other 
approaches like artificial neural networks not included in the applications presented here. 
Such methods and a numer of hybrid techniques in soft computing must be taken into 
account before deciding a particular implementation. 
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1. Introduction 

In recent years video-based tracking systems have been gaining widespread attention in 
several application fields. They are often used in military or surveillance applications (Ellis 
& Black, 2003; Collins et al, 2000; Cupillard et al., 2003; Fischer et al.,2004; Safeguards, 2007), 
in medicine (Grimson et al., 1998; Bornik et al, 2003; Pandya & Siadat, 2001; Tang et al., 1998; 
Bernd & Seibert, 2004), entertainment industry (Stapleton et al., 2002; Wren et al., 1997; 
Huang & Yan, 2002; Collomosse et al., 2003; Fua & Plankers, 2003) or sport (Qiu et al., 2004; 
Gueziec, 2002; Kristan et al., 2006), for research on human-computer interaction (Sato et al., 
2004; Bradley & Roth, 2005; Polat et al., 2003), intelligent environments (Krumm et al., 2000) 
and similar. Continuous technological development and increasing competition among 
vendors have led to a great selection of tracking systems that are available on the market 
today with a variety of capabilities.  
To compare them, several factors have to be considered. While price, speed or technical 
limitations may be very important for initial selection, the tracking accuracy is usually the 
most important property. To assess a tracking system and its precision, we need a reliable 
measure which allows for comparison of tracking system performance, provides estimates 
of tracking errors and indicates how to optimize the tracking system parameters.  
The natural way to analyze the accuracy of any tracking system is to compare it to some 
reliable reference data. While a selection of comparison methods is readily available to the 
research community (Needham & Boyle, 2003), a reliable reference data (ground truth) can 
be hard to obtain, especially if greater accuracy is desired. Publicly available collections of 
video recordings with registered 3D ground truth information can be helpful, but are very 
scarce and with limited selection (Scharstein & Szeliski, 2003; CVTI, 2007). Such collections 
can be very useful in the development and testing of tracking algorithms, but are not 
enough for evaluation of a complex video tracking system in its actual operating 
environment.
Instead, one of the most popular approaches to obtain the reference data is to resort to an 
electromagnetic tracking device. These devices offer fast and accurate measurements and 
are insensitive to the line-of-sight requirements of optical motion trackers, which makes 
them ideally suited for tracking free-moving objects.  
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In this chapter we describe a general framework for assessing the 3D accuracy of video-
based tracker by comparing it to an electromagnetic tracking device. Since both devices 
record data within their local coordinate systems, the data needs to be aligned accordingly 
before any comparison. This transformation between the coordinate systems of a video 
camera and the reference tracker is crucial for reliable and unbiased analysis of the optical 
tracking algorithm performance. 
We analyze three possible models for the coordinate system alignment, based on measuring 
the position and orientation of video camera inside the reference coordinate frame. We also 
derive methods and metrics for comparing the models and their sensitivity. The 
transformation error is analytically and statistically separated from the tracking error of the 
algorithm, making it possible to compare 3D tracking accuracy of different algorithms in the 
same experimental setting.  
The last part of the chapter demonstrates the applied value of the introduced models by a 
real-world experiment. The accuracy of a stereo camera-based face and hand tracker is 
analyzed by comparing the simultaneous measurements from the Polhemus 3Space Fastrak 
electromagnetic tracker (Polhemus, 1998). Three various transformation models are tested 
and compared using the derived metrics. Finally, the algorithm’s tracking error is estimated 
by statistically separating it from the transformation-induced error.  

2. Survey of the performance characterization of optical 3D tracking systems 

Performance characterization of 2D tracking systems is a well developed field. Its maturity 
is confirmed by the growing success of conferences such as IEEE Performance Evaluation of 
Tracking and Surveillance – PETS (PETS, 2005), along with other workshops and specialised 
conference sections. The European project Performance Characterization in Computer Vision – 
PCCV (PCCV, 2007) also boosted the growing awareness and interest in the scientific 
community. A comprehensive review of the field can be found in (Christensen & Förstner, 
1997; Gavrila, 1999; Black et al., 2003; Bashir & Porikli, 2006; Georis et al., 2003). In 
(Needham & Boyle, 2003), several metrics are presented for comparing the tracked 
trajectories, but they are still limited to 2D. The paper also describes an example of how to 
generate ground truth data by manually marking the video sequence. This approach is often 
used, despite the fact that it is very labour intensive, time demanding and unreliable. To 
make the process easier, several authors developed semi-automatic procedures that use 
existing collections of ground truth data to generate new reference data (Jaynes et al., 2002; 
Doermann & Mihalcik, 2000; Black et al., 2003; Georis et al., 2004). 
Performance characterization of 3D optical trackers is faced with a serious obstacle, since 
reliable ground truth data is much harder to obtain than for 2D trackers. Manual and semi-
automatic annotation of video streams with 3D reference information still have all the 
drawbacks of 2D approaches, and are even less precise due to difficulties in estimating  the 
depth, which makes it generally unsuitable for such tasks. The best approach is to measure 
ground truth using a second 3D tracking or measuring device with significantly better 
accuracy than the tested device. Electromagnetic tracking devices, marker-based optical 
systems and laser scanners are all frequently used for this purpose.  
Electromagnetic trackers such as (Polhemus, 1998) and (Ascension, 2007) are examples of the 
most popular solutions, and have been in use for more than 30 years. The latest models can 
produce measurements of a sensor’s position and orientation (6 DOF) with sample rates up 
to 240 Hz and static accuracy of 0.8 mm RMS for position and 0.15º RMS for orientation. 
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They are insensitive to occlusions, which makes them very suitable for tracking free-moving 
targets, such as humans and their body parts in movement. The majority of products use 
wired sensors which can be cumbersome to wear and may interfere with the free movement 
of the object. However, newer devices solve this problem by using wireless, battery-
powered sensors. A bigger concern is electromagnetic interference which greatly affects the 
actual device’s precision and is very hard to avoid in any urban environment. Precision also 
decreases rapidly once the distance from the transmitter crosses a certain limit. Therefore, 
appropriate means should be taken to reduce the effect of environment prior to performing 
any experiments (Kindarenko, 2000; La Cascia et al., 2000). Recent reports on the usage of a 
magnetic tracker for tracking the position of head movements were published in (Xiao et al., 
2003; La Cascia & Sclaroff, 1999), while (Rehg & Kanade, 1994) reports using it for tracking 
the hand movements. In (Bernd & Seibert, 2004) a specially designed magnetic sensor was 
implemented to guide an augmented reality system during minimally invasive surgery. 
Marker-based optical systems mean another attractive solution. To ensure the accuracy 
which is required for a reliable ground truth, the reference optical trackers usually depend 
on active or passive markers that are attached to the target. The NDI Optotrak Certus 
system (NDI, 2007) uses up to 512 markers at distances up to 2.25 m. Markers are scanned at 
1500 Hz with accuracy of 0.15 mm RMS. NaturalPoint (NP, 2007) and ARTracking (ART, 
2007) also supply various marker-based trackers. Besides their speed and reasonably good 
accuracy, optical trackers have another advantage. To calibrate them, a specially designed 
target is usually shown to the camera (Bornik et al, 2003). This same target can also be used 
to calibrate the optical tracker whose accuracy is being measured, so the same coordinate 
system is used, which greatly simplifies the data comparison. However, the main obstacle 
remains their sensitivity to occlusions, which is undesired when tracking the complex 
movements. It also hinders a reliable performance evaluation of the video-based tracker. 
Recent examples of application include tracking the position of the head (Vogt et al., 2006), 
the body (Herda et al., 2001), person tracking (Balan et al., 2005), in medicine (Keemink et 
al., 1991; Bornik et al, 2003), etc. 
While the electromagnetic devices and marker-based optical trackers can only provide 
measurements for a limited number of 3D points, laser scanners can scan the whole scene 
and obtain dense range measurements with great accuracy. For example, the systems 
(Optix, 2007) and (VIVID, 2007) achieve the resolution of 0.05 mm at 100 mm distance and 
0.5 mm at 900 mm distance. Dense range information is very useful for a number of 
applications, but comes at a price: the scene is usually scanned through a lens by a single 
laser and this operation typically takes a couple of seconds on modern devices. This 
currently makes laser trackers inappropriate for tracking any reasonably fast movement, but 
they can provide an excellent reference for static scenes. A combination of laser and optical 
tracking system for neuro-surgery application is described in (Grimson et al., 1998).  
Unfortunately, a surprisingly low number of papers can be found on general evaluation of 
3D tracking accuracy. Some authors (Yao & Li, 2004; La Cascia et al., 2000; Kindarenko, 
2000) inspect this issue in more detail, but they ignore the relationship between the two 
coordinate systems, i.e. of the verified system and of the reference, and usually align the two 
sets of measurements by only looking for an optimal fit (Needham & Boyle, 2003). Such 
performance analysis is insufficient, as it masks possible tracker alignment errors and 
doesn’t give real accuracy information. To clarify this issue the next chapter focuses on 
electromagnetic tracking device as an example of a ground truth for video-based tracking 
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evaluation. We also explain the necessary coordinate system transformation and evaluate 
the factors involved in it. 

3. Electromagnetic tracker as a reference for video-based tracking 

In this section we describe the general framework for assessing the 3D accuracy of video-
based tracker by comparing it to an electromagnetic tracking device. Fig. 1 depicts the usual 
approach. In order to compare the tracking performance, the target’s position must be 
measured by both systems simultaneously. The magnetic sensor is firmly attached to the 
target object. Each time a frame of the scene is captured by the camera, the sensor’s position 
is read and stored into a file, thus forming a motion trajectory of the target as detected by 
the magnetic tracker (a reference trajectory). Afterwards, the video is processed by a 
tracking algorithm to reconstruct the vision-based trajectory. Each trajectory is expressed in 
its own coordinate system (CS). In order to compare them, they need to be transformed into 
a common CS. Without loss of generality we select the coordinate system of magnetic 
tracker as the common CS in this discussion. 

Figure 1. A general approach to analyzing the accuracy of video-based tracking with an 
electromagnetic tracking device. Suitable alignment of coordinate systems is necessary for 
comparison of detected motion trajectories 

This transformation between the coordinate systems is crucial for a reliable and unbiased 
analysis of the optical tracking algorithm performance. Once the tracking data is properly 
aligned, it can be compared using any standard metrics, such as Root Mean Square (RMS) 
for example. The most frequently used method for aligning two trajectories uses 
optimization that minimizes the distances between them. Such a solution completely ignores 
possible bias errors and gives little information on how well the tracking algorithm follows 
the actual movement of the object. For example, if an algorithm consistently provides 
overestimated depths, the aligned trajectories can still show a close match. Another solution 
to this problem is aligning of the two coordinate systems physically by carefully positioning 
the camera and the magnetic tracker. Although this might seem a fast and simple procedure, 
such alignment is never perfect and results in considerable transformation errors. A quick 
calculation shows that an orientation error of 1º results in the position error of 3.5 cm at a 
distance of 2 meters from the camera. 
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A better approach to align the coordinate systems is by measuring the position and 
orientation of video camera using the magnetic tracker’s sensors. This gives us enough 
information to derive a mathematical transformation between the CS of video camera (CSC)
and magnetic tracker (CSM). Such alignment enables more thorough study of the 
transformation and its parameters, as well as comparison between the errors caused by the 
transformation and by the tested tracking algorithm. Although the idea seems 
straightforward, its implementation must be carefully considered, as will be explained in the 
next subsections. 

3.1 Transformation models for coordinate systems 

Assume we have a point in 3D space that needs to be expressed in two coordinate systems 
simultaneously. In CSC we denote it by C C C C T

1 2 3( , , ,1)p p p=p  and in CSM by 
M M M M T

1 2 3( , , ,1)p p p=p , respectively (using homogenous coordinates and denoting the 
transposition of vectors by T). Since both vectors pM and pC represent the same point in 
space, the following equation holds: 

M C=p Ap . (1) 

Transformation matrix A contains the information about translation and rotation of CSC

with regards to CSM. The position of camera’s origin can be described by point oC = (o1, o2,
o3)T, while base vectors iC = (i1, i2, i3)T, jC = (j1, j2, j3)T and kC = (k1, k2, k3)T describe its 
orientation. If homogenous coordinates are used, matrix A has the following structure: 

1 1 1 1

2 2 2 2

3 3 3 3

0 0 0 1

i j k o
i j k o
i j k o

=A . (2) 

Vectors iC, jC, kC and oC that define A depend on a set of parameters , { }l= Θ , l = 1, …, 
N. The exact number of parameters, N, depends on the procedure selected for building the 
transformation model. One of the most important parameters is the exact camera position. 
Of course, this information is usually not readily available, but it can be measured by 
placing one of the magnetic sensors on the camera and reading its position and orientation 
data. This simple approach has several shortcomings: 
• The origin of CSC is usually located inside the camera body and is impossible to be 

measured directly.  
• The camera housing is usually metallic and therefore distorts the sensor’s 

electromagnetic field. 
• While inaccurate measurements of camera position have a relatively small effect on the 

overall accuracy, the erroneous camera orientation can cause significant deviations in 
results. 

To address the abovementioned problems we present three different models for 
transformation of CSC into CSM. In all three models, the magnetic tracker is used to measure 
only the position of a number of control points around the camera that are used to calculate 
its position and orientation. Positional information shows significantly lower level of signal 
distortion than the information about orientation, as we have indicated. For a unique 
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solution at least three control points in space are needed. They can be selected in a number 
of ways, but due to physical limitations of the used equipment (presence of ferromagnetic 
materials, camera range) this selection can affect the quality of transformation. The 
following options will be examined: 
• All three control points are measured away from the camera (model A). 
• Two points are measured on the camera and one away from it (model B). 
• One point is measured on the camera and the other two away from it (model C). 

Model A
To ensure that the camera body does not interfere with measuring magnetic sensor, all three 
control points are measured at a certain distance from it. The camera housing is fixed to a 
flat wooden board and accurately aligned with the board’s sides (Fig. 2). Three corners of 
the board are selected and their coordinates are measured by magnetic sensor to obtain 
three control points T1, T2 and T3. Since it is assumed that camera’s coordinate axes are 
completely aligned with the board, the base vector iC can be expressed by 3 1T T , the base 

vector kC by 2 1T T  and the base vector jC is determined by the cross product (Fig. 2): 

C C3 1 2 1

3 1 2 1

, ,= =T T T T
i k

T T T T

C C C= ×j k i . (3) 

The position of the camera’s CS origin, oC, is expressed in CSM by manually measuring the 
relative distances d1 and d2 between control point T1 and oC (Fig. 2): 

C C

1 1 2

Cd d= − −o T i j . (4) 

This way the transformation model A can be completely described by 11 parameters 
{ }A 1 1 1 2 2 2 3 3 3 1 2, , , , , , , , , , ,x y z x y z x y z d d=  where 1 1 1 1( , , )x y z=T , 2 2 2 2( , , )x y z=T  and 

3 3 3 3( , , )x y z=T .

Figure 2. The setup of the magnetic tracker (left) and the camera (right) for model A. Vectors 
iM, jM, kM denote base vectors of CSM, while iC, jC, kC denote base vectors of CSC. T1, T2 and 
T3 mark the control point positions, while d1 and d2 mark manual measurements 

Model B
The second transformation model neglects the fact that the camera housing disturbs the 
measurements, but it can be implemented only if those disturbances are proven very small 
compared to the errors caused by false orientation data. If the magnetic sensor is placed on 
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the camera lens’ face (Fig. 3), the disturbances caused by the camera housing are reduced to 
a minimum. This model also considers a stereoscopic (Jain et al., 1995) camera setup with 
two lenses that are used as two acceptable position measuring spots. The proposed model 
could be extended to a single camera, but the second measured point on the camera, T3,
would be more problematic. This is why we are developing only the stereoscopic setup here.  

Figure 3. The setup of the magnetic tracker and the camera for model B. Vectors iM, jM, kM

denote base vectors of CSM, while iC, jC, kC denote base vectors of CSC. T1, T2 and T3 mark 
the control point positions, while d marks the lens’ focal length 

First, the position of control point T1 on the face of the left camera lens (Fig. 3) is measured. 
Next, the magnetic sensor is attached to an arbitrary flat screen in front of the camera 
(control point T2 in Fig. 3) and the camera is aligned in such a way that the sensor is visible 
exactly in the centre of the left image. This step insures that the point T2 lies on the camera’s 
(i.e. the lens’) left optical axis. Since base vector kC has the same direction as this optical axis, 
we calculate it from T1 and T2. The base vector iC is obtained by measuring the coordinates 
of the third control point T3 on the face of the right camera lens (Fig. 3): 

C 1 2

1 2

= TT
k

TT
, C 1 3

1 3

= TT
i

TT
. (5) 

Base vector jC is calculated from Eq. (3). The origin of CSC lies on the camera’s left optical 
axis and is determined by displacing the point T1 by d, i.e. the camera’s focal length (Fig. 3): 

C C

1 d= −o T k . (6) 

The transformation model B is therefore described by 10 parameters: 

{ }B 1 1 1 2 2 2 3 3 3, , , , , , , , ,x y z x y z x y z d= ,

where the initial 9 parameters have the same meaning as with A, and d is the focal length.  
When aligning T2 with the centre of left image, a quantization error of at least ½ pixel is 
unavoidable. This error causes a displacement of T2 from the optical axis by rH in horizontal 
direction and rV in vertical direction (relative to camera’s left optical axis). At distance h
from the screen, camera’s field of view measures equal uH × uV (Fig. 4). At the same time, 
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this area is represented in the image by vH × vV pixels. Therefore, an error of 1 pixel (± 0.5 
pixel) causes a displacement of point T2 by 

H V

H V
H V

H H V V

2 tg 2 tg
2 2

,

h h
u ur r
v v v v

ϕ ϕ

= = = = , (7) 

where Hϕ  and Vϕ  mark the camera’s horizontal and vertical view angles (Jain et al, 1995). 
Other parameters of model B are not affected by the image quantization error.  

Figure 4. Left: stereo camera’s field of view. Right: vertical displacement rV of point T2 due 
to 1 pixel of error when aligning it with the centre of the left image 

Model C
This model is similar to model B, except that control point T3 is also measured on the screen 
in front of the camera (Fig. 5). The camera should be aligned so that its left image displays T2

in the centre, while T3 is displaced from the image centre by mH pixels horizontally and mV

pixels vertically. Therefore, base vectors kC and jC are obtained by using the same procedure 
as with model B.  

Figure 5. The setup of the magnetic tracker and the camera for model C. Vectors iM, jM, kM

denote base vectors of CSM, while iC, jC, kC denote base vectors of CSC. T1, T2 and T3 mark 
the original control point positions, T3' and T3'' mark recalculated position of T3, while d
denotes the lens’ focal length. Plane ℜ is perpendicular to the left optical axis 

Base vector iC could be determined by T2 and T3, but since the camera’s optical axis is, in 
general, not perpendicular to the screen, the point T3 position must be recalculated 
accordingly. Imagine a plane ℜ which is perpendicular to the optical axis and intersects it in 
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T2. Point T3' ∈ ℜ can be determined by the intersection of ℜ and a line that is passing 
through T3 and is perpendicular to ℜ (Fig. 5). The new vector '

2 3T T  is coplanar with iC, but 
needs to be rotated around the camera’s left optical axis to get parallel with iC. The required 
angle of rotation α  is determined by mH and mV:

V

H

arctg
m
m

α = . (8) 

The new point T3'', obtained after the rotation, is finally used to calculate the base vector iC:

C 2 3

2 3

′′
=

′′
T T

i
T T

. (9) 

The origin of CSC is determined by focal length d, as in Eq. (6). The third transformation 
model is therefore described by 12 parameters:  

{ }C 1 1 1 2 2 2 3 3 3 H V, , , , , , , , , , , .x y z x y z x y z d m m=

3.2 Sensitivity of transformation models and their parameters 

Inaccuracies in matrix A (Eq. (2)) cause erroneous transformations of coordinate systems, 
that depend also on the measurement model applied.  To assess the appropriateness of a 
particular model, a measure for comparing the transformations and their parameters is 
needed. When parameter values are measured, the inherent measurement error can be 
statistically estimated using standard techniques (Stoodley, 1984). However, the effect of 
each parameter on the final transformation error depends also on its sensitivity. To 
determine the sensitivity of transformation matrix A to the parameter set , each element 

, ,u va ∈ A [ ], 1,2,3,4u v∀ ∈ , will be described as a function of parameters lΘ ∈ :

( ), , 1 2, ,...,u v u v Na f= Θ Θ Θ . (10) 

Sensitivity of transformation matrix A can be expressed by derivatives: 

[ ] [ ], , 1 2( , ,..., )
, for , 1,2,3,4 , 1,...,

u v u v N

l l l

a f
u v l N

∂ ∂ Θ Θ Θ∂ = = ∀ ∈ ∀ ∈
∂Θ ∂Θ ∂Θ

A . (11) 

Unfortunately, the resulting mathematical expressions in Eq. (11) are too complex for direct 
comparison. Instead, the derivatives can be compared numerically by using real parameter 
values obtained from experiments (Section 4). This procedure gives an estimate on the 
largest contributor to the transformation error.  
The effect of a mutual interaction of parameter errors on the sensitivity of matrix A is 
generally too complex to determine, but the overall upper error bound of each 
transformation model can still be estimated. The magnitude of error amplification for a 
certain parameter can be expressed if Eq. (1) is differentiated: 

M
C C ,

l l l

∂ ∂ ∂= ≤ ⋅
∂Θ ∂Θ ∂Θ
p A A

p p  (12) 
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M
C

M M
,for 1,...,

l l
lS l N

∂ ∂ ⋅
∂Θ ∂Θ

= ≤ ∀ =

p A
p

p p
. (13) 

Expression (13) describes the relative sensitivity Sl of point pM with regards to parameter 
lΘ . For matrix norm calculation, a spectral norm 

2
A is suggested (Meyer, 2001). Replacing 

pC in (13) by relationship from Eq. (1), an expression for calculating the relative sensitivity 
for individual parameters yields: 

M
1 M 1 M

1

M M M
,for 1,...,

l l l
l

l

S l N

− −

−

∂ ∂ ∂⋅ ⋅ ⋅
∂Θ ∂Θ ∂Θ ∂= ≤ ≤ = ⋅ ∀ =

∂Θ

p A A
A p A p

A
A

p p p
. (14) 

Finally, the upper relative sensitivity limit of the whole model (SMAX) equals the sum of 
individual sensitivities: 

M

MAX 1

M
1 2

...
N

S −

∂
∂ ∂ ∂ ∂= ≤ + + + ⋅

∂Θ ∂Θ ∂Θ

p

A A A
A

p
. (15) 

Sensitivity of a certain model, SMAX, shows how much the inaccuracies of measured model 
parameters destroy the correct coordinate system’s alignment. It can serve as a model 
robustness measure. On the other hand, the transformation sensitivities related to the 
individual parameters, Sl, indicate how much uncertain parameter measurements can ruin a 
good alignment. Thus, they rank the parameters according to their devastating influence on 
the correct alignment and point out those whose measurements must be done most 
accurately. 

3.3 Decomposition of vision-based tracking error 

With a suitable reference, such as a magnetic tracker, the tracking error of a vision-based 
system can always be assessed. However, as we showed in previous sections, this error 
consists of two contributions: the error which emerges from the tracking algorithm and the 
error caused by inaccurate coordinate system transformation. The latter depends on the 
combination of parameter values, and can be made in favour for any of the models A, B or C 
from Subsection 3.1 just with adequate choice of parameter values. It is therefore important 
that any comparison of the models respect the same specific set of parameters, related to one 
specific setup of the camera and magnetic tracker. All comparison results and conclusions 
are thus valid for this selected setup only. 
Performance of transformation models can be most realistically evaluated by comparing the 
actual motion trajectories obtained by the magnetic tracker with the aligned trajectories from 
the tracking algorithm. The RMS difference of matching coordinate pairs reveals the average 
deviation of the algorithm results from the magnetic tracker’s reference. However, this error 
does not reveal the true accuracy of the tracking algorithm, because the transformation 
errors caused by inaccurate parameter values also contribute to the difference between 
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trajectories. For detailed analysis, the transformation error needs to be separated from the 
tracking error of the algorithm. In the sequel, we describe two possible approaches.  

Analytical approach 
Eq. (1) explains the transformation of a 3D point from CSC into CSM under ideal 
circumstances. In reality, the measurements of control point positions T1, T2 and T3 contain 
inaccuracies. As a result, the transformation matrix A is determined corrupted. Denote it by 
Ae:

e = ⋅ ΔA A A , (16) 

where A is a 4×4 matrix representing the transformation errors. Any vision-based tracking 
algorithm is also incapable of estimating the exact location of a target pC, but instead reports 
corrupted coordinate position  C

ep :

C C C

e = Δ ⋅p P p . (17) 

Error matrix PC contains unknown coordinate errors dp1, dp2 and dp3 that are added to pC :

1

2C

3

1 0 0

0 1 0

0 0 1

0 0 0 1

dp
dp
dp

Δ =P , (18) 

The errors of magnetic tracker are considered significantly smaller than algorithm-based 
errors, so points pM are considered exact in this derivation. Finally, the transformation from 
CSC into CSM can, under realistic circumstances, be expressed by 

M C

e e= ⋅ ⋅p A C p , (19) 

where matrix C compensates the errors of both the algorithm and the transformation. Eq. 
(19) is valid for any pair of points Mp  and Cp . So, we can observe more of them together. If 

four points are selected, they together can be described by a matrix C C C C C

1 2 3 4=P p p p p .

This matrix contains ideal homogenous coordinates of four arbitrary points. Analogously, 
the corresponding error-corrupted points can be joint in matrix C

eP  and related magnetic 
measurements in matrix PM. If we can find four points whose coordinate errors dp1, dp2 and 
dp3 are the same, Eq. (17) can be extended to all four points together. Although this 
condition is hard to verify in practice, four measurements with the most similar error can 
still be found by searching through all the combinations of the observed points. A criterion 
for the error similarity will be presented at the end of this section. At this point, we suppose 
that PC contains the identical error of four selected points. 
By substitution of Eq. (1) in Eq. (17), the following relationship is obtained: 

( ) ( ) ( ) ( )1 1 1 1
M C C C C C

e

− − − −
⋅ = ⋅ ⋅ ⋅ Δ = ⋅ ΔP P A P P P A P . (20) 

Since the left-hand side of (20) is known and PC has a specific structure, the contents of the 
ideal matrix A can be reconstructed as: 
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( )
1 1 1 1 1 1 1 1 1 1 1 2 1 3 1

1 2 2 2 2 2 2 2 2 2 1 2 2 2 3 2C

3 3 3 3 3 3 3 3 3 1 3 2 3 3 3

1 0 0

0 1 0

0 0 1

0 0 0 1 0 0 0 1 0 0 0 1

i j k o dp i j k i dp j dp k dp o
i j k o dp i j k i dp j dp k dp o
i j k o dp i j k i dp j dp k dp o

−

− − − − +
− − − − +

⋅ Δ = ⋅ =
− − − − +

A P . (21) 

First three columns of the resulting matrix in (21) represent the rotational part of ideal 
transformation matrix A, only the translation part (the fourth column) cannot be directly 
determined. However, new base vectors i, j, k, that are more reliable, can be computed and 
used to construct new transformation matrix Â . This matrix represents the best estimate of 
ideal matrix A. If Â  is used in Eq. (16) instead of A, the estimated transformation error A
can be obtained: 

( ) 1

e
ˆ

−
Δ = ⋅A A A . (22) 

Using Eqs. (1) and (17), Eq. (19) can be rearranged into 
C C C= Δ ⋅ ⋅ Δ ⋅p A C P p , (23) 

which proves that 
CΔ ⋅ ⋅ Δ =A C P I , (24) 

where I stands for identity matrix.  
Since matrix C can be calculated from Eq. (19), the error matrix PC can also be determined, 
giving also the matrix PC afterwards: 

( ) ( )
( )

1 1C

1
C C C

e

,

.

− −

−

Δ = ⋅ Δ

= Δ ⋅

P C A

P P P
 (25) 

Finally, the exact vision-based points PC can be compared to magnetic tracker reference 
data, which results in a reliable tracking accuracy analysis. 
Of course, this conclusion is based on the assumptions that four point vectors joint in matrix 

C

eP  contain the same error PC and that the magnetic tracker can be considered error-free. If 
such a set of four points can be found that the reconstructed rotation vectors (denoted by 

ROTÂ ) are orthonormal to each other, then both assumptions are satisfied. This property can 
be used as a criterion function when searching for a suitable set of points: 

( ) ( )
ROT

T

ORTO ROT ROT ROT
ˆ

ˆ ˆ ˆ

a

f
∀ ∈

= ⋅ −
A

A A A I . (26) 

Four points obtained by tracking algorithm that generate the matrix ROTÂ  (using Eq. (20)) 
with the lowest fORTO value are the ones that best satisfy the assumptions.  

Statistical approach 
Another approach to separate the coordinate-system transformation error from the tracking-
algorithm error is based on statistics. It can always be implemented, which makes it 
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preferred to the analytical approach with four selected trajectory points whose proper 
choice is not always guaranteed in practice. Eq. (1) can again serve as a starting point, but 
instead of grouping four camera-based trajectory points with similar errors, we express the 
transformation of each point separately. Same as before, the ideal values of A and pC are 
unknown, only error-contaminated Ae and C

ep  are available: 

C C C

e e

M C

e e

, ,= + Δ = + Δ

+ =

A A A p p p

p e A p
 (27) 

Note that the transformation error ΔA  and algorithm-based error CΔp  are handled 
differently than in previous approach, although the same notation is adopted. Instead of 
multiplicative error model, an additive error model is used here. Vector e denotes the total 
deviation of each transformed point C

e eA p  from its magnetic reference position Mp . The 
error of magnetic tracker is considered to be insignificant compared to other errors, so the 
tracker’s measurements are considered exact. 
Using Eq. (27), the total tracking error can be expressed by 

( )( )M C C

C C

e

,

.

= − + + Δ + Δ

= Δ + Δ

e p A A p p

e A p Ap
 (28) 

Since the actual value of e can be calculated for each point, only A, ΔA , and CΔp  remain 
unknown. Matrices A and ΔA  remain constant throughout the analysis. Consequently, 
some estimates about their value can be made using statistical methods. First, the maximum 
expected error of each transformation parameter lΘ  must be realistically estimated. Then, a 
set of random, normally distributed errors is generated and added to the measured 
parameter values of a selected coordinate-system transformation model, resulting in a 
transformation matrix ASIM whose coefficients are influenced by additional errors 
introduced artificially and, thus, exactly known. This matrix is used to transform the points 

C

ep , recognized by vision-based algorithm. A new trajectory is obtained which is a variation 
of the proper camera-tracked trajectory in CSM. By repeating this process and generating a 
large set of possible transformation matrices, their mean transformation error mRMS(ASIM)
can be calculated. Due to the averaging properties of the RMS metrics, this error is expected 
to approximate the actual mean transformation error mRMS(Ae). Experiments confirm this, 
provided that Ae is sufficiently close to ideal A.
If a large enough set of errors is simulated, one or more of the resulting trajectories may 
closely resemble the ideal transformation. Unfortunately, it cannot be specifically identified 
since the initial measurement error of Ae remains unknown. The best we can do is to find 
the simulated trajectories that minimally or maximally deviate from the mRMS(ASIM) and use 
them as estimates of minimal and maximal expected transformation error, MIN

SIMΔA  and 
MAX

SIMΔA . When those values are entered into Eq. (28) together with matching ASIM and e
values, the estimated C

SIMΔp  can be calculated, and consequently the estimated C

SIMp  as well 
(Eq. (27)). Those simulation-based estimates can be used to statistically compare individual 
factors involved in the presented tracking accuracy analysis.  
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4. A practical example: stereo video tracking compared to the Polhemus 
Fastrak magnetic tracker 

To illustrate the presented ideas on a practical example, we describe an experiment in which 
the Polhemus 3Space Fastrak magnetic tracker (Polhemus, 1998) is used as a reference for 
analysis of 3D tracking algorithm based on images from the Videre Design’s STH-MD1-C 
stereo head (Videre, 2001). The obtained motion trajectories are aligned using all three 
presented transformation models and analyzed according to procedures explained in 
Section 3. 
The Fastrak tracker uses four wired sensors and produces measurements with static 
resolution of 0.8 mm RMS for position and 0.15° RMS for orientation. This accuracy is only 
achieved when the sensor is less than 75 cm away from magnetic transmitter. We adapted 
the experiment to this requirement and took several measures to ensure that 
electromagnetic interference was minimal. 
The digital STH-MD1-C stereo head uses two synchronized CMOS sensors with 9 cm of 
baseline distance and was in our case equipped with f = 48 mm lenses. At maximum 
resolution of 1288 × 1032 pixels the camera captures only 7.5 frames per second (fps), but if 
the frame size is reduced to 320 × 240 pixels, the frame rate increases to 110 fps. During all 
our experiments the camera was positioned approximately 1 meter away from the test 
subject. Detailed schematics of camera, Fastrak and test object are depicted in Fig. 6.  

Figure 6. Schematics of the experiment setup including a stereo camera (CSC), a source of 
magnetic pulses (CSM), magnetic sensor and a frame for limiting the movement of the user’s 
hand. Left side shows top view of the setup, right side shows side view 

Video data was processed by our algorithm for detection of human hands and faces (Divjak, 
2005). The algorithm uses bimodal colour and range information to detect consistent skin 
coloured regions. 3D centroids of those regions are tracked temporally by a Kalman filter-
based prediction algorithm, resulting in smooth 3D motion trajectories of the tracked objects 
(Fig. 7). 
The positions of all control points and other transformation model parameters were 
measured before conducting the experiment (Tables 1 and 2). Then, one of Fastrak’s sensors 
was attached to the back of the test subject’s right hand. The test subject moved his hand 
along a predefined, physically limited path so that the movement remained practically the 
same during all the experiments. Every time the stereo camera captured a pair of images, 
the position of magnetic sensor was read and stored. Three different video sequences were 



Analysis of Video-Based 3D Tracking Accuracy  
by Using Electromagnetic Tracker as a Reference 105

captured, each consisting of 120 – 200 colour image pairs with 320 × 240 pixels, and, in 
parallel, also the magnetic tracker reference data. 

Figure 7. A few frames of the captured video overlaid with the object region borders (in 
white), as detected by the stereo tracking algorithm 

Parameter d1 d2 d mH mV

Value 490 mm 14 mm 48 mm 85 pixels 9 pixels 
Table 1. Manually measured transformation parameter values for models A, B and C 

Parameter x1 y1 z1 x2 y2 z2 x3 y3 z3

Model A (mm) 201.4 241.9 91.3 211.2 522.2 100.2 -68.1 266.0 124.5 
Model B (mm) -83.7 204.8 88.9 -62.4 -99.4 -41.7 -97.4 198.8 84.8 
Model C (mm) -83.7 204.8 88.9 -62.4 -99.4 -41.7 107.4 -17.7 -10.6 

Table 2. Coordinates of control point T1, T2, T3 for models A, B and C as determined by the 
Polhemus magnetic tracker 

4.1 Comparison of transformation models 

Using parameter values from Table 1 and Table 2 the base vectors iC, jC, kC and coordinate 
system origin oC were calculated for each model (Table 3). Those vectors can be used to 
construct transformation matrix A by Eq. (2). Relative sensitivity of model parameters is 
presented in Table 4. Finally, the upper sensitivity limit SMAX of each transformation model 
is compared in Table 5. With our selection of parameter values, the model A turned out to 
be the most sensitive. 

Model Calculated CSC base vector values 

A C C C C

0.999 0.037 -0.035 -288.6

-0.028 , -0.033 , -0.999 , 255.9

-0.038 0.999 -0.032 96.0

= = = =i j k o

B C C C C

0.999 0.037 -0.027 -289.2

-0.028 , -0.038 , -0.999 , 250.0

-0.038 0.999 -0.037 96.1

= = = =i j k o

C C C C C

0.998 0.038 -0.027 -289.2

-0.045 , -0.038 , -0.999 , 250.0

-0.040 0.998 -0.037 96.1

= = = =i j k o

Table 3. Base vectors of CSC and its origin (expressed in CSM), as defined by measured 
parameter values 
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Model A Model B Model C 
Parameter Sl value Parameter Sl value Parameter Sl value

x1 398.5 x1 410.4 x1 408.8 

y1 175.2 y1 390.7 y1 389.1 
z1 174.8 z1 410.2 z1 408.5 
x2 1.4 x2 20.4 x2 20.3 

y2 0.7 y2 3.4 y2 3.4 
z2 19.9 z2 20.3 z2 20.2 
x3 10.6 x3 0.4 x3 0.1 

y3 224.3 y3 6.9 y3 0.1 
z3 224.3 z3 4.5 z3 0.8 
d1 398.6 d 390.1 d 388.5

d2 398.6 mH 0.5 

mV 4.6 
Table 4. Numerical relative sensitivity values Sl for all parameters of models A, B and C 

Model A B C 

SMAX 2026.9 1661.1 1651.2 
Table 5. The upper sensitivity limit (SMAX) of models A, B and C for our experimental setup 

4.2 Trajectory comparison 

Fig. 7 shows an example of how the algorithm detected the image regions that represent the 
tracked objects. However, it doesn’t give us any clue about how accurate is matching 
between the reconstructed and the reference 3D position. To obtain this information, all 
captured trajectories were transformed from CSC into CSM (using constructed matrices A)
and their deviation from the magnetic reference was estimated. Table 6 reports RMS 
differences for all three transformation models. An example of the aligned trajectories is 
depicted in Fig. 8.  We experimented with 3 trajectories consisting of 500 3D points all 
together.

Model
X RMS 

difference 
(mm)

Y RMS 
difference 

(mm)

Z RMS 
difference 

(mm)

Total RMS 
difference 

(mm)
A 16.1 ± 6,1 5.8 ± 1.2 10.7 ± 1.7 20.5 ± 4.9 

B 14.8 ± 2.9 12.7 ± 0.7 72.5 ± 6.4 75.1 ± 6.8 

C 34.7 ± 3.2 12.7 ± 0.4 55.1 ± 6.7 66.4 ± 6.9 
Table 6. The RMS difference between the coordinates of video-based and magnetic-based 
trajectories, as aligned by each transformation model. Mean values plus standard deviation 
for all captured trajectories are shown 
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Figure 8. An example of transformation of vision-based trajectories from CSC to CSM, for 
each transformation model. The magnetic tracker data is depicted by solid lines, the video-
based tracking algorithm data is depicted by dotted lines 

4.3 Error analysis 

The total tracking error (Table 6) origins in the transformation error and algorithm error, as 
described in Section 3.3. We tried to decompose the total error into its constituent 
components by the proposed statistical approach. First, we empirically estimated maximal 
expected errors of all model parameters. For Fastrak measurements, its factory specified 
accuracy of ± 0.8 mm was used, while for manual measurements with a tape measure we 
estimated accuracy of ± 0.5 mm. For measurements in pixels we estimated an error of ± 0.5 
pixel, which according to our setup (the camera was 1 m away from the object) is equivalent 
to ± 4 mm. Using those values we generated a set of random, normally distributed 
measurement errors (zero mean, 1000 Monte-Carlo runs) that were added to actual 
measured parameter values, simulating the effect of error matrix ΔA . Mean values of 
vectors of the simulated matrix ASIM are shown in Table 7. 

Model Simulated CSC base vector values 

A C C C C

0,999 0,000 0,037 0,001 -0,035 0,004 -288,7 0,8

-0,028 0,001 , -0,033 0,004 , -0,999 0,000 , 249,9 0,6

-0,038 0,001 0,999 0,000 -0,032 0,004 95,8 0,7

± ± ± ±
= ± = ± = ± = ±

± ± ± ±
i j k o

B C C C C

0,999 0,001 0,037 0,011 -0,027 0,003 -289,2 0,7

-0,028 0,011 , -0,038 0,003 , -0,999 0,000 , 249,9 0,8

-0,038 0,011 0,999 0,000 -0,037 0,003 96,1 0,7

± ± ± ±
= ± = ± = ± = ±

± ± ± ±
i j k o

C C C C C

0,999 0,000 0,038 0,007 -0,027 0,003 -289,2 0,8

-0,025 0,003 , -0,038 0,003 , -0,999 0,000 , 249,9 0,8

-0,038 0,011 0,999 0,000 -0,037 0,003 96,1 0,8

± ± ± ±
= ± = ± = ± = ±

± ± ± ±
i j k o

Table 7. Base vectors of CSC and its origin (expressed in CSM), obtained by a simulated 
matrix ASIM. Mean values and standard deviations were estimated by 1000 iterations 

The effect of transformation errors was evaluated on all available trajectories, detected by 
the tracking algorithm during our experiments. Each trajectory was transformed into CSM

using matrix ASIM and compared to the magnetic reference. Trajectories with minimal and 
maximal deviation from the mean simulated value were identified and the resulting 
transformation errors MIN

SIMΔA  and MAX

SIMΔA  were used to calculate the lower and upper 
bounds of estimated tracking errors, separating the transformation error from the error of 
the tracking video-based algorithm (Table 8). 

Model A Model B Model C
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Model
Min.

transformation
error (mm RMS) 

Max.
transformation

error (mm RMS) 

Min. algorithm 
error

(mm RMS) 

Max. algorithm 
error

(mm RMS) 
A 2.5 ± 0.002 11.6 ± 0.02 17.1 20.5 
B 2.3 ± 0.02 9.5 ± 0.23 20.9 22.8 
C 1.7 ± 0.01 6.3 ± 0.08 21.4 22.2 

Table 8. Separation of total tracking error into transformation-induced error and algorithm-
induced error. Values shown are mean estimates based on MIN

SIMΔA  and MAX

SIMΔA , for all 
captured trajectories 

4.4 Discussion 

Our experiment demonstrates the importance of trajectory transformation models and their 
effects on the estimated tracking error. The main difference between the presented models 
was the placement and the way of measuring the control point positions. In model A, 
control points T1, T2, T3 are measured at a safe distance from the stereo camera and its 
coordinate system centre (approximately 50 cm). When a measurement error is made, its 
effect on the calculation of camera orientation is much smaller than if the same 
measurement error is made at close distance to the coordinate origin. In models B and C the 
metal body of the camera distorted the measurements slightly, but close to the CSC origin 
the prevailing errors appear again. 
It is important to notice that an imprecise physical alignment of the stereo camera’s two 
image sensors significantly corrupts the trajectory comparison. This is particularly obvious 
for models B and C, because they require manual alignment of control point T2 with the left 
optical axis. Any displacement of the optical axis can be verified during the calibration of 
the camera and should be corrected accordingly. 
Relative sensitivity values in Table 4 show which parameters amplify the measurement 
errors the most, possibly causing a significant transformation error. In model A, such 
parameters are T1, T3, d1 and d2. In models B and C, parameters T1 and d are the most 
sensitive. Comparison of the upper relative sensitivity limits SMAX (Table 5) also confirms 
that model A is the most sensitive, while model C is the least. But, we need to consider the 
fact that a highly sensitive parameter with low actual numerical value can have less impact 
on the transformation than a parameter with low sensitivity and large numerical value. For 
example, if a measurement error of a few millimetres is made at close distance to the camera 
(like control point T3 in model B), it would greatly distort the trajectory comparison, even if 
the parameter in question has very low sensitivity.  
Consequently, the trajectory comparison results cannot be matched directly with the 
estimated SMAX. In our experiments, the real parameter values generated such coordinate 
system transformations that model A produced the lowest tracking error, while model B 
performed the worst (Table 6, Fig. 8). On the other hand, the simulation of the 
transformation errors ΔA  determined the trajectories with the minimum and maximum 
errors (Table 8). In this context, model C corresponds to the lowest expected error, while 
model A to the biggest, which is consistent with the SMAX predictions. Thus, a conclusion 
based on the model sensitivity about the accuracy of the proposed coordinate-system 
transformation is that model C is theoretically the least error-prone, while model A is the 
most. 
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Since the identical tracking algorithm data was used in all comparisons, the error of the 
tracking algorithm should appear the same for all three transformation models. Our best 
estimate of the total tracking error is 20.5 mm RMS, as obtained by model A (Table 6). The 
minimal and the maximal transformation errors of individual models can be used to 
decompose the total tracking error, resulting in estimates of the lower and upper bound of 
the algorithm error. For model A, the transformation error is estimated between 2.5 and 11.6 
mm RMS, while the algorithm video-based error is between 17.1 and 20.5 mm RMS (Table 
8).
Reference measurements of the Fastrak tracker also contain certain inaccuracies, but since 
their magnitude is significantly lower than transformation error or algorithm error, they are 
ignored and Fastrak measurements are considered error-free. However, in experiments 
where the magnetic sensor is more than 75 cm away from the magnetic transmitter, those 
errors should be considered and compensated accordingly. 

5. Conclusion 

When a magnetic tracker is used as a reference for vision-based tracking, a reliable 
transformation of their coordinate systems is crucial for proper tracking accuracy 
estimation. To address this issue in more detail, three different models of coordinate system 
alignment were developed. By analyzing the worst-case sensitivity of transformation 
models a limited comparison of those models is possible. The most influential model 
parameters are easy to identify and should be measured with special care. However, the 
actual parameter values used also have a significant effect on the final transformation error. 
With appropriate selection of parameter values, any model can be manipulated to produce 
the most accurate transformation. Therefore, such comparisons are only reasonable if the 
parameters are fixed to a certain setup of a camera and a magnetic tracker. 
In our experiment the transformation model A resulted in the lowest total trajectory 
difference, despite being the most sensitive. Statistical separation of this error into estimates 
of the tracking algorithm’s error and the transformation-induced error provides more 
detailed discrepancy analysis. 
The presented approach is applicable to any setup where the performance of video-based 
tracking is to be estimated by a reference device with its separate coordinate system. 
Experimentally determined parameter values and conclusions are valid only for the specific 
setup, but the proposed methodology can be applied to any similar problem. 
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1. Introduction     

To create three-dimensional (3D) models of real scenes and objects is an old and challenging 
computer vision problem. Systems that can reconstruct the 3D model of object, for instances 
the human head or cultural artefacts, have found many applications such as virtual 
character animation and interactive museum exhibition. Real object models can be 
reconstructed automatically using active and passive methods. Object range scanning by 
laser or structured light are typical examples of the active methods. They often demand 
expensive equipment and special skill to operate. Moreover, they are not very good in 
modeling very glossy objects. The passive methods can acquire images of the object at 
different viewpoints using off-the-shelf CCD cameras (Chang & Chen, 2002). The camera is 
usually calibrated by taking pictures of a specially designed calibration pattern or object. 
The camera viewpoints can be arbitrarily selected and the camera model is adjustable. For 
instance, Niem (Niem, 1999) proposes a 3D object reconstruction method using a mobile 
camera to capture image of the object and calibration pattern simultaneously. 
Our system of 3D object model reconstruction consists of four major steps: camera 
calibration, volumetric model reconstruction, polygonal model formation and texture 
mapping. An overview of our system is shown in Figure 1. The camera calibration is to 
obtain the intrinsic and extrinsic parameters defining the internal camera properties and the 
viewpoint orientation with respect to the object. The object and the calibration patterns can 
be captured simultaneously. Therefore, the camera can be placed anywhere and each view 
can be calibrated independently. One of the popular approaches for volumetric modeling is 
shape from silhouette (SFS), which is to recover the shape of object from its contours. 
However, reconstruction of a complex rigid object from its images is a challenging computer 
vision problem, especially when the object exhibits large textureless surface or concave 
surface. Previously, we enhance the SFS-based volumetric modeling algorithm by imposing 
the photo-consistency in neighboring views and the aggregation of evidence in volume 
space via the use of voxel mask (Wong & Chan, 2004; Chiang & Chan, 2006). Although the 
algorithm is very good in tackling textureless as well as concave surface, it is still unable to 
model non-Lambertian object surface accurately. In the present investigation, we propose a 
novel volumetric modeling algorithm that further improves the shape reconstruction by 
explicitly taking into account the object surface specularity. Then the polygonal model is 
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formed by the marching cubes algorithm (Lorensen & Cline, 1987). Various operations are 
applied to refine the polygonal model. Finally, a texture map is created from the original 
image sequence and mapped onto the polygonal model to give it a realistic appearance. 
Computer graphics techniques are adopted for the synthesis of missing or unseen texture. 

Figure 1. Overview of 3D model reconstruction system 

2. Volumetric model reconstruction 

Volumetric modeling is an important part of 3D model reconstruction. Conceptually, it is 
based on computations in 3D volume space in order to construct the object volume in the 
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world coordinate system that is consistent with the input images. Image-based volumetric 
modeling methods generally assume that the object or scene is Lambertian. Ideally, only 
matte surface exhibiting purely diffuse reflection satisfies Lambert’s Law. Many real objects 
are moderately glossy, e.g. plastic and ceramic objects. They exhibit both diffuse and 
specular reflections. The model reconstructed by conventional volumetric modeling 
algorithms contains many errors due to violation of this assumption. Therefore a lot of post-
processing effort is needed before the 3D model can be used in practical applications. 
In our system, the topology of the object is first obtained by a voting-based SFS technique. 
Detail object shape is reconstructed in two steps: partial surface estimation and total model 
generation. In our first attempt, partial surface is estimated by exploiting color-consistency 
and the aggregation of evidence in volume space. A novel 3D voxel mask is used for 
measuring the color dispersion, instead of using the conventional image block matching 
technique. To tackle real glossy objects, we further enhance the 3D model reconstruction 
system by proposing a novel partial surface estimation algorithm that can handle the co-
existence of both diffuse and specular surfaces. Based on the dichromatic reflection model, 
we derive an explicit relation characterizing the specular reflection. Voxel mask is employed 
for measuring either photo-consistency or surface specularity during the volumetric 
modeling. 

2.1 Shape from silhouette/photo-consistency 

The volumetric modeling assumes that there is a bounded volume (V) within which 
contains the object of interest. This volume is often assumed to be a cube and the most 
common approach to representing it is a regular tessellation of cubes called voxels (v). SFS 
reconstructs the volumetric model using a sequence of images. Each viewpoint location can 
be estimated from the camera calibration process. Our first volumetric model reconstruction 
method, called shape from silhouette/photo-consistency (SFSPC), uses the voting-based SFS 
firstly to reproject the object silhouettes onto the 3D voxel space to obtain the topology of 
object. Partial surface estimation and total model generation are then used to refine the 
volumetric model which will be explained later. 
In our system, the contour of the object is simply extracted from each of the input images 
with the use of a monochromatic background during image acquisition. The reason why we 
set up the system in front of a monochromatic background is to save the computation time. 
Object silhouette can be extracted easily and subsequent computation can be confined to the 
object region. It should be mentioned that a relaxation of the acquisition environment is 
possible at the cost of longer computation time. That will not affect the reconstructed model 
as the background voxels can still be carved away by the partial surface estimation 
algorithm, no matter it exploits photo-consistency or surface specularity. 
Each silhouette image is represented in binary form. SFS recovers the volumetric description 
of the object from multiple silhouette images by volume intersection. Firstly, a bounding 
cone is constructed, using the camera focal point and the corresponding object silhouette. If 
a point of the voxel is back-projected onto the inside the object silhouette, that voxel may be 
occupied by the object. Otherwise, the voxel is outside the object. To make the estimation of 
the object in 3D space more accurate, multiple silhouette images taken at various viewpoints 
can be used. Then, a visual hull (VH) is constructed by intersecting all the bounding cones 
formed by the object silhouettes (Laurentini, 1994). 
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Many SFS-based methods assume that the silhouette images are errorless. However, in real 
situation, silhouette images may contain errors which can affect the accuracy of the 
reconstructed model. Therefore, an extension of conventional SFS, such as the voting-based 
SFS, is implemented such that silhouette image error does not seriously affect the 
reconstructed object shape. First, the volume space V is set up and the score of each voxel is 
initialized to zero. Based on the voting-localizing scheme, a score of the voxel is incremented 
each time if the voxel is projected onto the silhouette image region, that is the projected color 
is not the background color. An accumulated value is obtained until all images are visited. 
The voxel is considered as visible only and is included in the visual hull VH if its 
accumulated score is larger than a pre-defined threshold as shown in the following pseudo-
code. 

For each voxel v in V

v.score = 0 

End For 

VH = φ

For each voxel v in V

For each silhouette image i, where i = 1…NumOfImages 

Color = ProjectVoxelOnImage(v, i)

If Color != BackgroundColor 

Then v.score = v.score + 1 

End If 

End For 

End For 

For each voxel v in V

If v.score ≥ Threshold 

Then VH = VH ∪ v

End If 

End For 

The voting-based SFS can be treated as a generalization of SFS, by which setting the 
threshold as the total number of views becomes the conventional SFS. The advantage of the 
voting-based SFS over the conventional SFS is to minimize the adverse effect of the artefact 
in silhouette images to the resultant model. 
It is well known that SFS is not guaranteed to reconstruct a correct 3D shape of the target 
object, especially when the object has concave surface. To cope with this problem, it is 
necessary to incorporate other technique to detect and recover the shape concavity. Shape 
from photo-consistency is one of the choices. For a greyscale or color image, the photometric 
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information does give improvement in volumetric reconstruction. If a voxel corresponds to 
the surface of an object, the texture and color properties of its projection points on the 
images, from which it can be seen, must be nearly the same. There is an assumption made in 
any color-consistency method: surface of the object is assumed to satisfy the Lambertian 
reflectance model, so that every surface appears equally bright in all directions regardless of 
the illumination. The shape from photo-consistency algorithm consists of two steps: (i) 
partial surface estimation, and (ii) total model generation. The basic idea of partial surface 
estimation is that if a voxel corresponds to the surface of the object, the color of its projection 
point on each image is similar to each other. Due to lighting fluctuation and image noise, the 
ideal color-consistency (or zero color dispersion) is not possibly achieved using the whole 
set of images. However, it is much easier to estimate a fairly good partial surface from a 
small set of neighboring images by relaxing the color dispersion to a small value. As there 
are as many partial surfaces as the images and each partial surface may still have error, a 
merging step that can integrate the partial surfaces and at the same time reduce error is 
needed.
For the estimation of partial surface for each viewpoint, the color dispersion for each voxel 
must be calculated first. Color dispersion is to measure the difference of color values for a 
voxel projected to a number of consecutive images. The visible voxels with minimum color 
dispersion are chosen and regarded as the partial surface for that viewpoint. Equation (1) is 
used to calculate the color dispersion: 

+

−=
−=

mi

mij  sizeblock

2j))}C(p(v,i)){C(p(v,i)D(v,   (1) 

where the number of consecutive images is 2m+1, block size is the block area in the image for 
pixel-by-pixel comparison, and C(p(v, i)) is the color value of the projection point of voxel v

on image i. The partial surface for the ith viewpoint is referred as i
spV . Then, for each 

viewpoint i, v in the visual hull VH is projected onto the consecutive images from view i-m
to i+m for calculating the color dispersion. After the color dispersion calculation is finished, 

a set of voxels i
rV  along a ray from the focal point of i through v is obtained. Assign v to i

spV

if its color dispersion is the minimum among the voxels in i
rV . These operations are 

performed for all voxels and repeatedly for all viewpoints. To ensure that the voxels of each 
partial surface are photo-consistent, only a small number of consecutive viewpoints in the 
neighborhood of the partial surface viewpoint are examined instead of examining the whole 
sequence of camera views. If the voxel is occluded in one or more examining viewpoints, the 
color dispersion is high and that voxel will very unlikely be selected as partial surface. 
To generate the complete 3D volumetric model, the partial surfaces have to be integrated. 
However, error may still occur in each partial surface. For instance, variation of the color 
value of a surface point between two captured images due to environmental lighting can 
lead to false detection of the surface voxel. Therefore, a relaxation is allowed in integrating 
the partial surfaces by the voting-localizing scheme such that the error is rounded to 
construct a high precision model. The total model generation algorithm is as follow. 
1. Set the score of all voxels in VH as zero. 
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2. For each voxel v, increment the score using the following scheme: 
a. Calculate the distance between the focal point of i and v, L(v, i), and the 

distance between the focal point of i and voxel v’, L(v′, i), where v’ is the 
intersection of a set of voxels along a ray (from the focal point of i to v) and the 

partial surface i
spV .

b. Both distances are measured in the Euclidean space. If L(v, i) is greater than or 

equal to L(v′, i), that means v is behind or lying on i
spV . Then increment the 

score of v by 1. 
3. After looping all the viewpoints, if the total score is greater than a given threshold, v is 

appended to the final volumetric model. 
4. The process is repeated for all voxels. 

2.2 3D voxel mask 

The common practice of conventional shape from photo-consistency, or methods based on 
the color-consistency, is to project ‘one’ voxel into consecutive image views and threshold 
the variance of the color values. This makes the algorithm heavily rely on the image quality. 
Even in the multi-hypothesis testing (Eisert et al. 1999), only one voxel is used to measure 
the photo-consistency which is insufficient. On the other hand, the use of image-based pixel-
by-pixel comparison in a block area for measuring the color dispersion cannot guarantee a 
correct volumetric model. Therefore, the formulation of color dispersion should be re-
defined. Instead of using image-based comparison and multi-hypothesis testing of one-
voxel projection, a novel 3D voxel mask for evaluating the photo-consistency is proposed. 
Voxels in the mask are used to measure the photo-consistency among the consecutive 
images. 
The idea of voxel mask is somewhat similar to the image filter kernel. The voxel mask is 
oriented in three orthogonal directions with respect to the camera viewpoint. The line 
joining the camera and the examining voxel - centre of voxel mask, is called the axial 
direction. The other two directions are called coronal and sagittal. Each voxel in the 3D 
voxel mask is denoted as vvm. The structure of the voxel mask and the generation procedure 
are shown in Figures 2 and 3 respectively. 

Figure  2. 3D voxel mask 
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Figure 3. Generation of 3D voxel mask (cone: camera viewpoint, red voxel: centre of mask, 
brown voxels: voxels in a particular direction) 

The mask for each examining voxel is generated independently. The structure of mask is 
symmetric and invariant in the voxel space. This ensures that the same mask structure is 
used to evaluate the color dispersion among the neighboring images. However, not all 
voxels in the mask will be used to evaluate the color dispersion. In each direction, if any 
component vvm is not in the visual hull, all voxels in this direction are excluded from the 
color dispersion calculation. This mechanism can prevent the surface voxels from 
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erroneously removed from the volumetric model. As the number of voxels in the mask used 
to evaluate the color dispersion may be different, the accumulated color dispersion value is 
averaged by the actual number of comparisons. The new function for color dispersion 
evaluation is re-defined as: 

2
vm

mi

mij
vmvm j))},C(p(v))i,{C(p(vi),D(v −=

+

−=
 (2) 

The modified partial surface estimation using 3D voxel mask in our SFSPC algorithm is 
shown in the following pseudo-code. 

For each camera viewpoint i 
i
spV = φ

For each voxel v in VH
v.NoOfComparison = 0 
v.ColorDispersion = 0 
Form voxel mask for v
For each voxel vvm in voxel mask 

v.ColorDispersion += D(vvm, i)
v.NoOfComparison++

End For 
v.ColorDispersion = v.ColorDispersion / v.NoOfComparison 

End For 
For each voxel v in VH

If v.ColorDispersion = MINVri(v.ColorDispersion) 

Then i
spV  = i

spV ∪ v

EndIf
End For 

End For 

2.3 Shape from specularity consistency 

Volumetric modeling methods generally assume that the object surface is Lambertian. Real 
objects and scenes may have specular surfaces. Today, the visual quality of models becomes 
the main point of attention due to the increasing demand for 3D models in various areas 
such as virtual reality and product design. The presence of specular reflection hinders the 
accurate reconstruction of the model but it is this phenomenon that gives the 3D model a 
true sense of realism. It is therefore important to have sophisticated volumetric modeling 
methods that can handle non-Lambertian surfaces. 
The image pixel represents the reflection of light incident on a microfacet of the surface. The 
dichromatic reflection model (Shafer, 1985) describes the surface reflection as the sum of 
diffuse and specular reflections. The diffuse reflection is characterized by subsurface 
scattering and represents the shape of surface. The specular reflection occurs at the 
air/material interface and is only observed at some locations on the surface. We propose to 
model the non-Lambertian surface in our multi-view volumetric modeling framework. 
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Figure 4 shows the relationship between incident light, specular reflection, and camera 
viewpoints. The surface reflection R is modeled as R = Rd + Rs, where Rd and Rs are the 
diffuse and specular reflections respectively. Rd is proportional to cos( i) where i is the angle 
between the surface normal and the incident light direction. Rs can be decomposed into Rsc + 
Rsv. Rsc depends on surface material properties and i. Rsv is modeled as a cosine function Rsv

= k · cos( v – r) where r is the angle between the surface normal and the specular reflection, 
v is the angle between the surface normal and the viewpoint direction, and k depends on 

surface material properties. For a surface point illuminated by a fixed light source, Rd and 
Rsc are both constant and is represented as Rc = Rd + Rsc. Without using the polarizer, we 
cannot separate Rd and Rsc. But we do not need to eliminate Rsc as we have already stated 
that specularity gives the model a true sense of realism. We only need to exploit Rsv which 
varies with the change in viewpoint orientation, and devise volumetric modeling method 
that can accurately identify the specular surface voxels. Assume that Ri is the color of the 
surface voxel observed in viewpoint i. Ri+1 is the color of the same surface voxel observed in 
adjacent viewpoint i+1. These two adjacent viewpoints are separated by an angle .
Therefore,

 Ri = Rc + Rsvi = Rc + k · cos( vi – r) = Rc + k · cos( ) , (3) 

 Ri+1 = Rc + k · cos(  – ) . (4) 

Figure 4. Relationship between incident light, specular reflection and camera viewpoints 

If  is small, 

 Ri+1 = Rc + k [cos( ) · cos( ) + sin( ) · sin ( )] ≅ Rc + k · cos( ) · cos( ) , (5) 

 Ri+1 – Ri = k · cos( )[cos( ) – 1] = Rsvi[cos( ) – 1] . (6) 

This relation still holds for positive or negative  or . To evaluate the similarity in 
specularity among neighboring voxels, a planar voxel mask is used. A small size voxel mask 
is good enough to analyze the surface specularity in a local object surface. Voxels in the 
mask are used to measure the Rsv in consecutive images. The generation of a voxel mask for 
each examining voxel is based on the camera viewpoint. The mask is oriented in three 
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orthogonal directions with respect to the viewpoint as shown in Figure 5. The mask for each 
examining voxel is generated independently. The structure of mask is invariant in the voxel 
space. This ensures that the same mask structure is used to evaluate the specularity among 
the neighboring images. Again, the size of the voxel mask can be reduced when any voxel in 
the voxel mask (vvm) is not in the visual hull. As the number of voxels in the mask used in 
the evaluation may be different, the accumulated surface specularity 
(v.SpecularityDispersion) is averaged by the actual number of comparisons involved. If the 
examining voxel is a surface voxel, all the specularities measured by the voxel mask are 
small and similar. The accumulated (normalized) surface specularity is minimum. 
When there is sufficient texture information or the object surface exhibits inhomogeneity, 
the partial surface estimation can easily define the surface voxels. However, if the object 
contains a large, flat area in homogeneous color, accurate partial surface is difficult to obtain 
as the true color of that surface is almost the same in neighboring views. Considering the 
existing of image noise, the voxel with the color or specularity very similar to neighboring 
voxels may not be a real surface voxel. Based on our observation, the dispersion between the 
voxel near to the camera along the ray vnear and the minimum dispersion is checked. If the 
difference is smaller than the pre-defined threshold, vnear is assigned as the surface voxel. 
Otherwise, the examining voxel is the surface voxel. This measure ensures the reconstructed 
volumetric model is conservative rather than carves away true object voxels. The partial 
surface estimation, denoted as shape from specularity consistency (SFSC), is shown in the 
following pseudo-code. 

For each camera viewpoint i
Vspi = φ
For each voxel v in VH

v.TotalNumOfComparison = 0 
v.SpecularityDispersion = 0 
Form planar voxel mask for v
For each voxel vvm in voxel mask 

v.SpecularityDispersion += Rsvi

v.TotalNumOfComparison += 1 
End For 
v.SpecularityDispersion = v.SpecularityDispersion / v.TotalNumOfComparison 

End For 
For each voxel v in VH

If v.SpecularityDispersion = MINVri (v.SpecularityDispersion) 
If vnear.SpecularityDispersion – v.SpecularityDispersion ≤ Threshold 
Then Vspi = Vspi ∪ vnear

Else Vspi = Vspi ∪ v
End If 

End If 
End For 

End For 
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Figure 5. Planar voxel mask and its orientation – V: vertical axis, H: horizontal axis, CV: 
camera viewpoint axis 

3. Result 

Three objects (tiger, flower, square rubber) have been used to test our first volumetric model 
reconstruction algorithm SFSPC. The images are captured by a consumer-type digital 
camera at the resolution of 1024 × 768 pixel. The program is run on a 1.2GHz PC with 
Microsoft Windows 2000 and 512 MB RAM. 44 images are used to reconstruct the tiger 
model while models of flower and square rubber use 36 images. The resolution of the voxel 
space is 256 × 256 × 256 for all models. For the generation of partial surfaces, the number of 
consecutive views is set to be five (2 preceding views, the current view and 2 successive 
views). Figure 6 shows image views of the objects (top row), the corresponding partial 
surfaces (middle row), and partial surfaces at another view (bottom row). Figure 7 shows 
the volumetric models of the three objects. The voting-based SFS takes from 5 minutes to 12 
minutes. The partial surface estimation plus total model generation takes from 32 minutes to 
129 minutes. 
The square rubber is used to test the robustness of the SFSPC algorithm. Comparison is 
made between SFSPC and shape from silhouette/stereo (SFS2) (Matsumoto et al., 1999). We 
select SFS2 as the reference because SFSPC follows the concept of SFS2 while we enhance the 
shape from photo-consistency step by the use of 3D voxel mask. Also, SFS2 has 
demonstrated a better shape reconstruction than various existing techniques. The square 
rubber is used as it exhibits convex, flat, as well as deeply concave surfaces. The number of 
consecutive images is set to be five and the threshold for total model generation is 0.85. 
Different views of the reconstructed model are shown in Figure 8. It can be seen that SFSPC 
always generates a better volumetric model than SFS2. Figure 9 shows several rendered 
views of texture mapped models at arbitrary viewing positions. 
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Figure 6. Image views and partial surfaces of three test objects reconstructed using SFSPC 

Figure 7. Different views of volumetric models of three test objects 
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Figure 8. Comparison of SFS2 and SFSPC 

Figure 9. Synthetic views of texture mapped models of tiger, flower and square rubber 

SFS2 SFSPC 
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Next, we test our second volumetric model reconstruction algorithm SFSC using three 
plastic head objects and two ceramic teapots. The objects exhibit variety in topology (there is 
a hole in teapot handle) and also different degrees of concavity. They all exhibit moderately 
specular reflection. Each image sequence is captured by a consumer-type digital camera 
with a 2,048 x 1,536 CCD sensor. The target object and the calibration box are placed on a 
computer controlled turntable in front of the stationary camera. With neighboring views 
separated by 10 degrees, each image sequence contains 36 images. Photographs of the head 
objects and teapots are shown in Figure 10. The 3D model reconstruction system is run on 
an ACPI Multiprocessor x64-based PC with two Intel Xeon CPUs running at 3.6 GHz and 2 
GB RAM. Each volumetric model is reconstructed in a volume space of 128 x 128 x 128. 

(a) Head object 1   (b) Head object 2

(c) Head object 3   (d) Teapot 1 

(e) Teapot 2 
Figure 10. Photographs of the head objects and teapots 
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We also implement the well-known Space Carving algorithm (Kutulakos & Seitz, 2000) for 
comparison purpose. The volume space (128 x 128 x 128) is carved in four directions, with a 
group of 9 views allocated for each carving direction. Variance of pure color region is 
estimated in the background of the scene. Figure 11 shows the reconstructed models of head 
object 1. Figure 12 shows the reconstructed models of teapot 2. Figure 13 shows the texture 
mapped models of the objects which are reconstructed by SFSC. 

          

           

           

Figure 11. Reconstructed models of head object 1 using: (top row) SFSPC; (middle row) 
Space Carving Algorithm; (bottom row) SFSC 

We also compare the performance of these volumetric model reconstruction methods 
quantitatively. The reprojection correctness is the ratio of the number of pixels correctly 
reprojected from the volume space into the object and background regions to the total 
number of pixels of the acquired image. In principle, this measure only indicates the 
accuracy of the model silhouette in the acquisition viewpoints. The quality of the 
reconstructed model in arbitrary viewpoints should better be judged visually than 
comparing the reprojection accuracy. Ideally, the reprojection correctness should be 100%. 
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The accuracy is lowered due to erroneous removal of model voxels and non-removal of 
background voxels in the refinement of the volumetric model. Therefore, the reprojection 
accuracy values among the three comparing algorithms are very close. Theoretically, the 
closer the reprojection accuracy to 100%, the better is the volumetric modeling algorithm. 
Figure 14 shows the reprojection correctness of head object 1. Figure 15 shows the 
reprojection correctness of teapot 2. For head object 1, SFSC achieves higher reprojection 
correctness than the Space Carving Algorithm in all image views, while the average 
reprojection correctness is comparably with SFSPC. For teapot 2, SFSC scores higher 
reprojection correctness than the Space Carving Algorithm in 34 image views, while the 
average reprojection correctness is slightly lower than SFSPC. 

         

         

        

Figure 12. Reconstructed models of teapot 2 using: (top row) SFSPC; (middle row) Space 
Carving Algorithm; (bottom row) SFSC 
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4. Discussion 

SFSPC works well to model objects with more color inhomogeneity or sufficient texture 
information. It can quite accurately carve the concave regions. However, if the object 
contains a large, flat area in homogeneous color, partial surface estimation may not truly 
identify the real surface voxels. Besides, the computational time is still a problem. The 
higher the resolution is set, the more accurate and finer reconstructed model is generated. 
However, as the number of voxels in the volumetric model increases, more computation is 
needed to process the entire model. As for SFSPC, most of the time is spent on the partial 
surface estimation process. The computational time is directly proportional to the number of 
remaining voxels after the voting-based SFS. It is the trade-off between the computational 
time and quality of the model. Methods based on color-consistency evaluation depend on 
the quality and consistency of the input images, which are in turn sensitive to the lighting 
condition in the image capturing environment. This factor also affects SFSPC. It is the reason 
why the Lambertian reflectance model is assumed during the generation of the volumetric 
model. However, this assumption does not always apply in practical situations. 

(a) Head object 1   (b) Head object 2 

(c) Head object 3   (d) Teapot 1 

(e) Teapot 2 
Figure 13. Texture mapped models of head objects and teapots 
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Figure 14. Reprojection correctness of head object 1 

Figure 15. Reprojection correctness of teapot 2 

Our second volumetric modeling method SFSC works well on the objects not only with 
sufficient texture information but also with color homogeneity. Moreover, it can nicely 
reconstruct the concavity regions. It can be seen that the new algorithm, which explicitly 
takes into account surface specularity, can produce better results particularly in the 
reconstruction of frontal face, ears and top of the head object. The SFSPC can erroneously 
carve away many voxels (see the volumetric model of teapot 2). This is due to the 
Lambertian surface reflection assumption adopted in this method. The Space Carving 
Algorithm produces models which are very smooth with insufficient detail structure (see 
the facial features of head object 1). This is a very conservative method and many 
background voxels are still preserved in the volumetric model as shown in the volumetric 
model of teapot 2. Although there is no top view in our image sequence, SFSC can produce 
more accurate model than the other two methods (see the first column of Figure 12). 

View

View
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5. Conclusion 

In summary, we develop a system that can reconstruct the photorealistic 3D object model 
from a set of photographs. This image-based modeling system can create realistic models 
without requiring expensive hardware. The volumetric modeling is an important step in the 
system. We adopt the shape from silhouette approach to obtain the topology of the object. 
Detail object shape is reconstructed based on the constraint of photo-consistency. 
Meanwhile, a 3D voxel mask is introduced to check the photo-consistency of voxel, instead 
of using the conventional pixel-by-pixel block matching technique. However, the problem 
caused by non-Lambertian object surface is outstanding. To solve this problem, we propose 
a new algorithm that explicitly measures surface specularity during partial surface 
estimation. Meanwhile, a planar voxel mask is introduced for checking the consistency of 
specularities obtained from neighboring voxels in order to confirm the validity of a surface 
voxel. All these changes can enhance the performance of the volumetric model generation 
and solve the problem caused by non-Lambertian object surface. Our results show that the 
new volumetric modeling algorithm can produce better models than the Space Carving 
Algorithm and the concept of surface specularity is significant in generating high quality 
object model. 
Future research will be focused on further improvement of the quality of the model and the 
speed of the reconstruction process. New calibration pattern can be designed that can 
facilitate more accurate camera calibration. The research in volumetric modeling is still an 
on-going problem. The accuracy of the volumetric modeling also depends on the volume 
space resolution. However, the computational time is increased with higher volumetric 
resolution. Future work should be done in optimizing the modeling algorithm. 
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1. Introduction      

Mixed reality (MR) research aims to develop technologies that inputting or mixing the real 
world objects into computer generated three dimensional (3D) virtual space. The mixed 
reality, including augmented reality (AR) and augmented virtuality (AV), produces an 
environment in which the real objects are superimposed on user’s view of the virtual 
environment or the virtual objects are superimposed on user’s view of the real environment. 
Mixed reality has received a great deal of attention as a new method for displaying 
information or increasing the reality of virtual environments. Many research results have 
been reported and demonstrated [P. Biermann and B. Jung, 2004 - Shintaro Ono et al., 2005]. 
Recently, some new assessments have been developed that such new model of virtual 
systems which are different from traditional form is efficient for exciting user’s sense [Yi Cai 
et al., 1997 - Raphael Grasset, 2005]. However, most of such large-scale assessments still 
remain at the level of viewing computer graphics (CG)-generated virtual objects. It has 
revealed that such model of virtual system is no longer functional or fascinate based on 
virtual reality techniques only. The new, innovative, and mixed reality based approaches are 
required for operation or exhibition in 21st century. That means the new virtual reality 
model is focusing on cooperation-centred, real object-based operation. The features of such 
operation are mainly real or mixed, natural interactive, three dimensional with stereo vision, 
and collaborative.
Mixed reality environments are defined by Milgram as those in which real world and virtual 
world objects are presented together on a single display [Milgram P. and Kishino, 1994]. The 
single user based mixed reality interfaces have been developed for computer aided 
instruction [S. Feiner et al., 1993], manufacture [Cruz-Neira et al., 1992] and medical 
visualization [Bajura et al., 1992]. Recently, Seon-Min et al. [Seon-Min et al., 2006] presents a 
method for merging a live video stream of multiple users into a shared virtual space. These 
applications have shown that mixed reality interfaces can enable users to interact with the 
real world in ways never before possible.  
Furthermore, the combination of mixed reality and network communication is becoming a 
more interesting research subject. Although mixed reality techniques have proven enough 
valuable in single user applications, there has been less research on group collaborative 
applications. We believe that mixed reality is ideal for collaborative interfaces because it 
addresses two major issues in three dimensional computer supported collaborative work: 
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seamlessness and enhancing reality. In this paper we mainly describe a framework of our 
proposed collaborative system based on stereo vision for a shared mixed reality application 
and report the development experimental results. This research is sponsored by the national 
project of demonstrative application of China Next Generation Internet (CNGI2006).  

     

   
Figure 1. A human-scale direct motion instruction system of virtual reality[ Yi Cai et al., 
1997]

There are several different approaches for facilitating three dimensional collaborative 
operations. The most obvious is adding collaborative capability to existing screen-based 
three dimensional packages. The CAVE Automatic Virtual Environment (CAVE™) -like 
systems [Cruz-Neira et al., 1992] allow a number of users to view stereoscopic three 
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dimensional images by wearing LCD-shutter glasses. These images are projected on 
multiple large screen projection walls in the case of the CAVE™. Li-Shu [Li-Shu et al., 1994] 
developed a workstation based collaborative computer-aided design (CAD) package but 
users found it difficult to visualize the different viewpoints of the collaborators making 
communication difficult. Alternative ways include using large parabolic stereo projection 
screens or holographic optical systems to project a three dimensional virtual image into 
space. We had developed a human-scale direct motion instruction system for education and 
training shown in Fig.1 [Yi Cai et al., 1997]. However the system mainly emphasizes the 
haptic senses by way of virtual objects. Unfortunately in these cases there is still no suitable 
interface way for multi-users to communicate their view intension each other in three 
dimensional environment.  
Multi-user immersive virtual environments provide an extremely natural medium for three 
dimensional system. In this case computers provide the same type of collaborative 
information that people have in face-to-face interactions, such as communication by object 
manipulation and gesture [Wexelblat, 1993]. Work on the DIVE project [Carlson et al., 1993], 
GreenSpace [Ishii H. and Miyake, 1991] and other fully immersive multi-participant virtual 
environments has shown that collaborative work is indeed intuitive in such surroundings. 
Gesture, voice and graphical information can all be communicated seamlessly between the 
users.  
   The mixed reality can superimpose real world objects into the virtual world. This allows 
the creation of mixed reality that combines the advantages of both virtual environment and 
seamless cooperation. Information overlay may be used by remote collaborators to annotate 
the user's view, or may enhance face-to-face conversation by producing shared interactive 
object models. In this way mixed reality techniques can be used to enhance communication 
regardless of proximity. There are few examples of multi-user mixed reality systems. 
Amselen [Amselen, 1995] and Rekimoto [Rekimoto and J. Transvision, 1996] have explored 
the use of tracked hand held LCD displays in a multi-user environment. Klaus et. al. [Klaus 
et al., 1995] also use video compositing techniques to superimpose virtual image over a real 
world view.  Ogi et al. [Ogi et al., 2003] take the basis of segmentation by stereo cameras to a 
further step and generate video avatars. S. Wuemlin et al. generate a 3D video of a user in 
virtual world [S. Wuemlin et al., 2004]. Vorozcovs et al. present an optical tracking approach 
for a spatially immersive display [Vorozcovs et al., 2005].  
Our collaborative operation system presents a framework to use stereo video and 3D CG 
model with combination form for showing and indicating a real world object in a shared 
collaborative virtual workspace. These types of MR interfaces allow multiple users in the 
different location to see a shared stereo vision simultaneously. This approach is most closely 
related to that of image-based rendering and efficiently to allow users to collaboratively 
view and discuss the real world arts and products in stereoscopic types.   
The purpose of this research is to develop a platform for group user cooperation with stereo 
video and shared three dimensional vision. This paper presents a novel framework of 
collaborative MR workspace with shared three dimensional vision based on stereo video 
transmission. Our approach combines techniques of stereo video capturing, image/CG 
fusion and combination, and data transmission for shared stereo vision.  
The remainder of this paper is organized as follows. Section 2 introduces the distributed 
virtual environment. Section 3 discusses the framework of the proposed collaborative 
operation system. Section 4 describes the development of video based stereo vision system. 
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Collaborative operation in distributed virtual environment is shown in Section 5, and 
communication of collaborative workspace is drawn in Section 6. 

2. Shared Vision of Collaborative Environment 

With the development of mixed reality techniques, a group cooperation system for on-line 
distributed application, instead of  an individual user system, becomes more and more 
eager. That means a world wide workspace environment via IP network needs to be 
considered. Such applications likes scientific discussion, product design, indoor virtual 
tourist, and etc..  In virtual reality (VR) system, it is called distributed virtual environment 
(DVE). Generally, the distributed virtual environments consist of computer graphics, virtual 
reality, and distributed servers. In such environments, multiple users can do collaborative 
operations and view shared interactive scenes. Each participant can indicate object and 
change status in the scene or change viewpoints to walk-through the virtual space. The 
scenes are transmitted to all of other participants connecting to the distributed system via 
network and all of other participants can  see the object or scenes change in real time. This 
framework guarantees that all users can see the same scene representation.  

For the early stage of research work on distributed virtual environments, the most of  
researchers  focus their efforts on the use of function simulation, of which the almost of the 
scenes are generated by computer graphics. However, recent years the development of 
virtual reality and mixed reality requires the researchers to exploit new  technologies 
satisfying many increasing interesting applications, including:  

• Scientific discussion.  Scientific discussion based on distributed VR/MR system 
requires a collaborative scientific visualization environments. Such environments can be 
regarded as physical extensions of the model based discussion space. In such three 
dimensional virtual spaces, researchers can represent a data-driven model, view an 
image being captured from a real world object by a desk top camera, or show a 
dynamic module test to the participants in real time. The researchers can meet in a 
shared vision of three dimensional scenes and furthermore they can talk and write 
within such visual space.  

• Product design.  Recently number of product designs are entrusted to special designing 
companies. Whether in the stage of CG-based three dimensional model design or in the 
stage of prototype module fabrication, the product design should be shown to 
consigners with frequently discussion. For this application we intend to extend the use 
of DVE to facilitate computer-supported collaborative working (CSCW) space between 
two separated physical locations.  

• Indoor virtual tour. A new application may come to our daily life soon, called indoor 
virtual tour. Actually the application does not view video at home alone only. It is a 
group indoor virtual tour which shares a common vision, may be three dimensional 
vision, among connected physical locations. With the shared vision each viewer can see 
the same scenes simultaneously and share his knowledge to the touring fancy 
community. DVE is a logical prototype of indoor virtual tours and can provide a rich 
framework for advanced touring applications.
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• Arts appreciation. Supposing that you and your friends want to appreciate a cultural 
relic located in British Museum, without going to spot there.  A shared vision of 
collaborative environment may provide such applications. This means the system has 
the ability to enable participants to navigate through a cultural relic around and to 
appreciate it based on video sequences captured by a network video camera. Such 
shared vision environments hold great promise for a broad range of arts appreciation 
and so far as to e-commerce applications. 

• Demonstration lecture of medical operation.  Another interesting application of shared 
vision is demonstration lecture.  Typical one is demonstration lecture of medical 
operation. A video based, not CG based or image base, scene capture  system delivers 
sequences operation scenes to the physical separated demonstration hall. The 
participants view and learn from demonstration lecture of medical operation and the 
teacher can interpreter each operation procedure simultaneously.  

The technologies concerned with above applications include, but are certainly not limited to, 
image/video capturing, CG based modelling for the accurate and realistic real-time 
representation of scenes, fusion of image and CG modelling, natural user interface, group 
communications via network for updating the shared consistent scenes by transmitting 
streamed combination data of CG model, image and audio into the shared vision system.  
In order to provide the visual realism for such high demands on the underlying distributed 
systems and enable DVE to accomplish such applications within highly presence feeling for 
distributed systems, two essential factors play an important roles in their domain which are 
listed below.  
Vision of real scenes. For shared visual spaces of DVE, especially those used for existed 
objects, they are often required to provide lifelike scenes not only the CG generated model. 
The desire for visual realism has driven different visual medias, for example, the use of arts 
appreciation based on a group still images which are captured from objects or natural 
landscape around and well arranged in visual spaces is an typical instance.  Furthermore, 
the scenes generated from CG based model have already no any fascination for those of real 
arts appreciators and the pioneered information techniques should take up the mission for 
exploiting a novel medium in the shared space. To realize such DVE system, several of the 
media data need to be applied to three dimensional visions, including image, video, audio, 
and CG models, in any scene updates. Thus, the lifelike scenes of vision can be  obtained. 
Especially, in this occasion, the effects of data fusion on illumination, position, and scaling 
principally determine the scene presence.  
Real time communications. To support a group of users simultaneously with large shared 
scenes, audio, and operating commands in DVE causes a heavy load of data transmission. 
Therefore two main problems cannot be neglected, real time response (no delay) and media 
data synchronism, since either of them may obviously affect the specific of the shared vision 
systems. To guarantee the update of multiple viewers of a particular scene at the right 
moment, for example the operation happened or object moved, requires that such updates 
should be propagated quickly. However, the scene changes from any one viewer side 
usually cause quantity data updates that are sent to the network for data transmission. 
Several techniques are used to minimize the transmission amount, including the use of 
media data combinations, image/video compressions, operation detection, and simplex 
data transmissions in particular updates to reduce actual information traffic. An efficient 
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approach to reduce the traffic is to partition updates to related objects or users of a scene in 
general group communications, despite of P2P or multicast types.  

3. System Framework  

In this section, we will briefly describe our system framework, device setup for stereo video,  
and shared collaborative MR environment. The main process in our system is also explained 
here, including stereo video capture, operation detection, image/CG model combination, 
and media transmission for stereo video streams of group users.  

3.1 Stereo Video and Shared Mixed Reality Cooperation 

Recent developed VR and MR system do provide an alternative medium that allows people 
to share the same object in communication space. However, most of these system are within 
CG model based workspace. When people talk to one another on discussing an object, the 
object is usually the CG-generated model, shape-like but no sense of reality, and with 
insipid texture status, let alone the complex CG modeling of the object. Actually, people do 
likely appreciate real world arts and products, as well as CG models in a shared common 
three dimensional environments even by applying a commentator instructions. To construct 
a real scene vision system, the scenes of real world and real world objects need to be 
obtained by image/video capture devices and inputted into the virtual environment.  
As mentioned above, our research is the part of the project of exemplary application of 
China Next Generation Internet (CNGI). This research project is aiming at a shared 
collaborative environment based on high performance video transmission for the increasing 
demands on developed VR and MR application, including man-machine interfaces, IP 
network communication, real world stereo vision, and collaborative operation.  
To achieve the goal of developing a platform for stereo vision of real scenes, it needs to 
develop a stereo video capture deveice with two cameras. The device can capture image 
sequences in dual video channels. For doing fusion of images and CG models, it needs to 
generate an assigned CG model and further more to determine the corresponding position 
within right and left images; then using compression algrithm to form video streams again 
for network transmission. Also, each user’s operation in the connected group should be 
detected for scenes updates. Finally, in the physical receiver side of the DVE system, 
decompression process is applied and a stereo display device is used for stereo vision which 
is active and real based on video streams. The parts above are the principal descriptions of 
our DVE concepts, which focuses on stereo video-based collaborative environment.  
      In our system there are several subjects need to be solved. Firstly, stereo video based 
vision system needs to be developed, including stereo video cameras (see Fig. 5) and left 
and right channel image sequences processing, media fusion, data compressing, and stereo 
video display. Secondly, operation interface with model based vision indicator is required 
for collaborative workspace. Thirdly, a key subject, media data transmission via network 
either for IPv4 or IPv6 environment needs to be established. For each part we will explain 
detail in the following.  

3.2 System Structure 

Now we briefly describe the structure of the system. Though in this paper we focus on a P2P 
application platform it is easily to extend it to server-client type.  Figure 2 shows the flow 
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diagram of our video based collaborative operation system. The system mainly consists of 
four functional modules which can be described as side of user A (as teacher), side of user B 
(as student), dotted line block 1, and dotted line block 2 in Fig. 2. Actually, the fact that we 
regard as user A as a teacher and user B as a student is just for system flow explaining and 
they certainly can exchange their status freely in the system. In this P2P collaborative 
platform user A and user B locate separately in physical location and are connected with IP 
network. The system may contain more users with user C, user D, and etc. by extension. 
Here, the side of user A is assigned as a teacher side, in where the real object is captured, an 
indicator is operated, and the combined image/CG sequences are transmitted to the side of 
user B. User B is assigned as a student who can see stereo video scenes of the interested 
object and the generated indicator which tracks the surface of the real object.  
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Figure 2.  Flow diagram of MR based collaborative operation system 

    Meanwhile, user B can also operate the indicator which is already displayed within the 
scenes. The system limits that only one operation is permitted at the same moment, either 
user A or user B. That means when user A operates the indicator the operation of user B is 
locked and contrariwise, user A side is the same status when user B do operation since these 
two possess identity status. This guarantees the identical vision of the system. Here, in side 
of user B, the system does not transmit video streams to side of user A, in where the side of 
user B is just a receiver for visual media. In side of user B, the system only transmits audio 
and operation information to side of user A. This mechanism can reduce the transmission 
complexity of the collaborative operation system. The procedure of scene updates according 
to the operation of user B will be illustrated in the following description.  
The dotted line frame 1 in Fig. 2 describes the module of stereo video/image capturing. The 
output of the module block is stereo video sequences of real object or real world scene.  
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Moreover the capture device consists of two cameras for capturing two channel image 
sequences which is shown in Fig. 5. Figure 3 is the structures of two channel image capture 
and process diagram in outgoing system. The central processing module is based on 
DirectShow® framework where handles capturing image sequences in buffer, three 
dimensional indicator model generation, indicator position registration, and stereo video 
stream combination. The corresponding outputs of the central processing module  are then 
delivered to stereo display and network transmission modules.  
The dotted line frame 2 in Fig. 2 describes the main function of the video based collaborative 
environment. In order to reduce the complexity of computation in this paper only indicator 
model is used and is regarded as a CG model for image/CG model fusion. By that as it may, 
it is easily to add other CG models if there are demands. The dotted line frame 2 contains 
the four modules of processing unit, besides user operation detection modules being 
described below:  
The first module (block 1) processes indicator position registration. When two images are 
read from image buffer captured from two cameras, the right indicator position is 
determined at once by, for example, user A operation detection which is shown by circle 1 in 
Fig. 2. The operation detection can be mouse movement distance checking (in this paper) or 
other natural interface detection by some other special devices. Next, in order to get the left 
indicator position image registration technique is used to find the suitable matching position 
in left image.  
The second module (block 2) takes image/CG model combination processing. When 
position of the indicator in left  image is found two CG models within right and left two 
images will be generated, respectively. The process includes generation of right eye 
indicator CG model and left eye CG model, shading with illumination, and image /CG 
model fusion of stereo image based on the determined indicator positions. As a result, two 
image/CG model fusion images are obtained.  
The third module (block 3) does stereo image combination and data compression. Since 
there are two channel images, right and left eye image, two video streams are necessary to 
be transmitted. This transmission pattern will cause communication complexity and 
encoding/decoding loads.  To simplify system transmission we try to combine two images 
sequences into one combined image sequence which has the same size in width and double 
size in height comparing to the original single image. After that, the compression algorithm 
of mpeg4 is used to execute data compression for the combined image sequences to obtain 
one video stream.  For audio communication mp3 is used for audio compression.  
The fourth module (block 4) accomplishes video stream decompression and stereo image 
generation. By decompressing the video streams received via IP network each combined 
image, having the same size in width and double size in height of the original one, is 
obtained sequentially. Followed up with decompression each combined image is then 
parted into right eye image and left eye image, respectively. Moreover the indicator 
modelled by CG is simultaneously shown in the vision scenes of user B. Though the 
description above is based on the operation in side of user A, the procedure is the same 
when system detects user B operation which is shown by circle 2 in Fig. 2. The difference is 
only that the sending engine in side of user B will send user B’s operation information to the 
receiving engine in side of user A via network transmission.  
     The collaborative workspace works via network environment and adapts to IPv4 
connections. To establish the system connection between user A and user B the receiving 
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engine in side of user B needs to start up firstly. When receiving engine runs, the side of user 
B is in waiting call status. When user B’s IP address is known by user A, the sending engine 
in side of user A then calls user B according to the IP address to establish the P2P 
connection. We stress that though the network connection of the collaborative workspace 
above adapts IPv4 environment it also works within IPv6 protocols, just needs to change the 
protocol module and setting interface of sending engine. 
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Image sequence buffer
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Figure 3.  Capture of two channels and process diagram in outgoing system 

4. Video Based Stereo Vision 
Since the collaborative operation system is a stereo video based MR system we need to 
develop a video based stereo vision framework, including stereo video capture device,  
stereo video stream transmission, and stereo video display installation, which enable users 
view stereo scenes at their separated locations. In this section we mainly describe the 
component parts of stereo video capture device, stereo video image combination,  and 
stereo video display installation.  

4.1 Stereo Video Capture 

The sketch of the stereo video capture system is shown in Fig. 4. The stereo video capture 
device consists of two video cameras, where has 6cm-7cm interval between their optical 
axises. Figure 5 shows one of our develped stereo camera device. In order to simplify the 
stereo capture device the usb interface cameras are used in this paper. Each usb camera has 
high performance in its capture features. It can get 30frame/sec within 640*480 pixels  
resulution.
The capture process is based on DirectShow  framework shown in Fig. 3.  DirectShow  is 
an important part of DirectX , which is provided by Microsoft  and is a high performance 
API to develop graphics, stream media, and audio applications on Windows  platform. The 
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right and left eye images coming from right and left camera of the stereo video device are 
captured into image buffer sequentially under DirectShow  capture framework. Then the 
image sequences are delivered to fusion/combination module for the processing of  
image/CG model fusion,  data compression and local side stereo diaplay.  

stereo camera

Figure 4.  Capture system of video based stereo vision in the collaborative system 

Figure 5.  The developed stereo camera for capturing image sequences of stereo video 

4.2 Display of Stereo Vision 

With regard to the stereo display in local side the fused right eye image and left eye image 
generated respectively by the fusion of image/CG model are directly delivered to 3D stereo 
display buffer of NV stereo . Meanwhile, in order to obtain a smooth display for video 
based stereo vision for far apart side in a DVE system we propose a combination approach 
to handle the stereo image sequence, named as stereo video stream combination module 
(see Fig. 2 or Fig. 3).  Fig. 6 shows the proposed combination approach, of where image 1 
and image 2 is assigned as the fused right eye and left eye image, respectively. To piece the 
two images, 1 and 2, together in up and down relation a combined image shown in Fig. 6 
right side can be obtained. By doing data compression on such image sequence a mpeg4 
formatted video streams are generated and then transmitted to the other users via IP 
network transmission.  
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     In the receiving side of DVE system the video streams received via IP network are 
decompressed and each combined image, having the same size in width and double size in 
height of the original one, is obtained sequentially. Then each combined image in the image 
sequence is then split into the two original image 1 and 2 and afterwards delivered to 3D 
stereo display buffer of NV stereo , respectively.  Figure 7 shows an example display of 
stereo vision of the collaborative operation system.  

Figure 6.  The combination of right and left images and the appearance of combined image 

Figure 7.  The display of stereo vision with fused (image/CG model) right and left eye 
images

In our system an active infrared control stereo display device is used for stereo vision in 
collaborative workspace. The stereo display device consists of an infrared control unit and 
pairs of liquid crystal eyeglasses, which are shown in Fig. 8. The liquid crystal eyeglasses 
have an optical shutter, which controls the right and left optical lens opens and closes 
alternatively in an appropriate frequency.  Usually the optical shutter frequency is 
concerned with field frequency of display device. According to human being’s visual 
response in order to avoid the feeling of scintillation, the frequency of each optical shutter 
should be more than 30Hz. Since the infrared control unit needs to control two optical 

1 2

1

2
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shutters open and close for right and left eye, the field frequency of display device should at 
least be more than 60Hz. In our stereo vision system the field frequency of display device is 
set to 100Hz. By this means when users wear the liquid crystal eyeglasses and view screen 
in front of display device the fascinating stereo scenes then really come to their eyes.  

Figure 8.  An active infrared control stereo display device and a pair of liquid crystal 
eyeglasses 

5. Collaborative Operation of DVE  

As mentioned above in this paper, to be an example of fusion application, a 3D indicator is 
regarded as a 3D CG model for accomplishing the fusion of image and CG model. The other 
CG models, if it is necessary, can be easily generated and fused in the same way.  In this 
section, we mainly describe the capture of 3D indicator motion,  indicator generation and 
image/CG model fusion, and collaborative operation control.  

5.1 Capture of 3D Indicator Motion 

The operation interface of our collaborative operation system provides co-located users to 
interact with shared virtual space while viewing the video based inputted real world objects 
simultaneously. There are two proposals being presented for collaborative operation in DVE 
system, complex one with natural interface and smiple one with mouse operation. Though 
both of the two methods will be mentioned in the following, in order to reduce the sytem 
complexity and costs the mouse operation method is employed in our collaborative 
operation sysetm. Therefor, when people construct such collaborative operation system they 
can select ones between these two interface methods acording to their purpose, space, and 
research outlay.  
A natural interface framework, within camera based detection and tracking of indicator in 
three dimensional space, is shown in Fig. 9.  The configuration of the prototype of natural 
indicating interface consists of two video based detecting cameras for indicator position 
detection. The upper camera in Fig. 9 detects the movement of the indicator in a height-
based horizontal plane and the front-upper camera detects the shifts information in height  
for indicator operation, respectively. Using the two detecting cameras, the position of 
indicator in three dimensional space can be obtained. The indicator being used can be a 
lightened spot device or a specially colour markered marker and user uses it to indicate the 
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position on the video based stereo object. If there needs to detect user’s viewpoint for 
follow-up scene changing, we prefer to employ an approach of human face detection and 
tracking rather than body detection and tracking. Both of face detection and body detection 
have ripe and efficient algorithms developed in motion capture resreach field which can be 
employed for natural man-machine interface of such collaborative operation systems.  
   As illustrated above for simplifying the scale of the collaborative operation system a 2D 
mouse operation style is used in our operation interface. Since the optical axises of the stereo 
cameras are generally set to pass through the shape center of a real world object, the 
relations of 3D indicator movement and mouse operation can be assigned as follows for 
simulation of 3D movement: 
• mouse movement in desk plane simulates in a height-based horizontal plane movement 

of the indicator in three dimensional space.  
• The size of indicator scales smaller and larger corresponding to the movement of going 

in and out in the horizontal plane. 
• The movement of mouse contact roller controls up and down movement of the 

indicator in height in three dimensional space.  
• The indicator maintains the size of its shape when user operates mouse contact roller 

alone.

camera

3D Marker 

detection

viewpoint detection

Figure 9.  Camera based detection and tracking of indicator in three dimensional space 

5.2 Indicator Generation and Image/CG model Fusion 

The 3D indicator is employed to indicate a 3D virtual object in three dimensional space. The 
way of 3D indicator generation is to overlay 2D geometric figures of indicator into right and 
left eye images, respectively. There is a certain interval between the two geometric figures of 
indicator, of where the interval is the same as the displacement of 3D object in right and left 
eye images in screen. More exactly to say the displacement of the 3D object is the distance 
between the same point on the object surface in right and left eye images. This guarantees an 
effect that the 3D indicator adjoins closely to the surface of the 3D object. In order to obtain a 
ideal visual effect the 3D indicator is better to be a solid geometry possessing volume sense 
and shading effect.  
Being with a part of collaborative operation system we adopt the method of addition class 
and DLL to realize 3D indicator, in which C3DCursor class realizes the modelling and 
rendering and a Match.DLL we developed realizes the registration (sometimes being 
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regarded as matching) of the corresponding point (actually a block area) in right and left eye 
images.  Using block area to execute the registration rather than a point is for avoiding noise 
disturbing. Moreover, in order to update the registration algorithm easily a DLL driven type 
is used in our program.  There are two registration algorithm we suggest which are shown 
in formula (1) and (2), one is based on block histogram and another is based on block vector 
of grey values.  
For formula (1) [Swain M and Ballard D, 1991], the colour space of each [0, 255] are 
quantified into feature colour V=v×v×v. The size of block area is set to level L (L is set to 3) 
for calculating block histogram H={H(l, i)| l=0, …, L-1, i=0, …V-1}. Here v is set to 16. 
Therefore the similarity value of S varies in [0,1], where 1 means the feature of two blocks is 
total same and 0 means no similar pixel values in the two registration blocks. H1 and H2

indicate the block histogram corresponding to right eye and left eye image, respectively. 

     
1 1

1 2

0 0

{ min[ ( , ), ( , )]}/
L V

l i
S l i l i L

− −

= =

= H H  (1) 

The normalized correlation function C shown in formula (2) [David A and Jean Ponce, 2002] 
is vector of grey value based computation, easier than the algorithm above, where d is a 
shift distance of a block in left eye image, and w and w’ are the vector formed by scanning 
grey value of the corresponding blocks sequentially in right eye and left eye image, 
respectively. Moreover w  and w′ are their averages. 
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There are several approaches to accomplishing a 3Dindicator modelling and rendering. 
Though OpenGL® or Direct3D® can easily be used to construct more complex 3D indicator 
and more real illumination and rendering can be obtained, the construction of modelling 
system is rather complicated and moreover, as for our experience OpenGL® and Direct3D® 
may occasionally emerge conflict with some modules in main program and cause an 
unstable system. For this reason in our system we adopt a way that drawing geometric 
figure directly by assigning values to an image matrix to generate a 3D indicator. An 
example of generated 3D indicator model is shown in Fig. 10. Figure 11 shows a rendering 
3D indicator and the fusion of image and the rendering indicator CG model in the 
collaborative operation system.  

             
                                    (a)                                                                        (b) 
Figure 10. An example of generated 3D indicator model 
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bottom 

               left                      right
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After four vertexes of the square in Fig. 10(a) are defined the shape of a circular cone is 
constructed by following loop statement

shape a={(x,y)| bottom<y<top, left+top/3-y/3<x<right+bottom-y}, 

     shape b={(x,y)| bottom<y<top, 3*(y-bottom)+left+(right-left)/3<x<right},  
(3)

where x and y are coordinates in the square, shape a and shape b are described by vertical 
line and horizontal line, respectively. Then circular cone can be get from a-b which is shown 
in Fig. 10(a).  
The illumination effect can be simulated by following function of grey values

 f(x,y) =255-K*|A|  (4) 

where

 A=(left+top/3-y/3+right+bottom-y)/2-x   (5) 

controls the variance of grey scale of each row pixels, and  

 K=360.0/(right+bottom-y-left-top/3+y/3)  (6) 

controls the variance of two extremity sizes of circular cone. After assigning the pixel values 
according to the algorithm above, the circular cone is then possess a stereoscopic visual 
effect which is shown in Fig. 10(b).  

5.3 Collaborative Operation Control on 3D Indicator 

For the collaborative operation system the operation control among group users separated 
in physical location is also a key subject that cannot be ignored. In this paper we adopt two 
techniques to execute the control of collaborative operation, priority operation and simplex 
combined image transmission.  The priority operation means if one user moves mouse to 
shift the indicator position the indicator changes in the stereo scenes being caused by 
operations of other users connected via network are restricted till that user releases the 
priority by stopping his operation.   

Figure 11. The generated indicator and the fusion of image and indicator CG model 
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The simplex combined image transmission is a mechanism to reduce the system complexity. 
By employing this mechanism the all mouse move information, despite of user B’s or user 
C’s if there is, will be delivered to side of user A. When their sending engines send their 
operation information to the receiving engine in the side of user A via network transmission 
the indicator CG model is then generated and set to the corresponding position for the 
follow-up manipulation of fusion and combination. This mechanism guarantees that an 
unique CG model generation engine and stereo video streams transmission engine can 
support system running which greatly cuts down the complexity of the collaborative 
operation system.   

6. Communication of Collaborative Workspace 

In order to construct a shared virtual workspace for users separated in real locations the 
collaborative operation system needs to preserve a real time communications for enjoying in 
face-to-face meeting, operation, and arts appreciation. All of the connected users can view 
and indicate the inputted real world objects in such virtual workspace with no bearing time 
delay. In this collaborative operation system a transmission module based on either IPv4 or 
IPv6 stereo video has been accomplished for the formed mpeg4 video and mp3 audio 
streams transmission.   

6.1 Data Transmission via IP Network   

To interact with shared virtual workspace the system needs to preserve real time 
communications to enable users separated in real world enjoying in face-to-face liked 
meetings, leanings, and arts appreciations with inputting real world object into MR based 
DVE systems. The media data for communication includes human voice, video based stereo 
sequences, and indicator position. Figure 12 shows the configuration of the collaborative 
environment with a shared MR workspace via IP network. Based on the applications of the 
system, the network for communication in this prototype prefers an Internet based 
distributed network rather than a special-use distributed network. For this purposes all 
protocols for command and stream media transmission are Internet Protocols with IPv4 and 
IPv6. We have tested successfully the data transmission in both IPv4 LAN and over three 
layers of node point with IPv6 environment.  The program below shows part of socket 
communication sour code. The interface of IPv4/v6 network communication in sending side 
(user A) is shown in Fig. 13 and 14, respectively. Figure 15 is the interface of IPv4/v6 
network communication in receiving side (user B). The right figure shows the waiting call 
status. Noticing that the receiving engine should be starts before sending engine. 
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Figure 12. configuration of collaborative environment via IP network 

mSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); 
 if (mSocket != INVALID_SOCKET){ 
  BOOL sopt = TRUE; 

 setsockopt(mSocket, IPPROTO_TCP, TCP_NODELAY,  
   (char *)&sopt, sizeof(BOOL)); 
  setsockopt(mSocket, SOL_SOCKET, SO_DONTLINGER,  
   (char *)&sopt, sizeof(BOOL)); 

 SOCKADDR_IN   saddr; 
 memset(&saddr, 0, sizeof(SOCKADDR_IN)); 
 saddr.sin_addr.S_un.S_addr = htonl(inTargetIP); 
 saddr.sin_family           = AF_INET; 
 saddr.sin_port             = htons((WORD)inPort); 
 if (connect(mSocket, (SOCKADDR *)&saddr, sizeof(SOCKADDR_IN)) != 0) { 
  Detach(); 
  return FALSE; 
 } 
 mIsConnected = TRUE; 
 return TRUE; 
}
return FALSE; 

6.2 Collaborative Workspace Based on Shared Stereo Video  

The proposed stereo video based collaborative operation MR system shown in Fig. 16 can be 
widely used in many applications. Figure 17 and 18 shows the experiment scenes of the 
system. The video of object scenes are captured into centre computer in side of user A which 
serves as a server to implement video capturing, video delivering, and operating command 
exchanging. The computer in both side of user A and B serves the stereo video sequences 
displaying.  
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left camera

left camera

lPv4 address

No sentyes sent still image sent

Figure 13. The interface of IPv4 network communication in sending side (user A) 

left camera

left camera

lPv6 address

No sentyes sent still image sent

Figure 14. The interface of IPv6 network communication in sending side (user A) 
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yes connect No connect

waiting call delete connecting

Figure 15. The interface of IPv4/v6 network communication in receiving side (user B). The 
right figure shows the waiting call status 

user A IPv4v/6 Network 

Communication

operating&

indicating user B

Input

real arts

operating&

indicating

Figure 16.  Collaborative operation framework of shared mixed reality via IP network 
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Figure 17. The experiment scene of collaborative operation MR system  

   
                                    (a)                                                                                 (b) 
Figure 18. The experiment scene of collaborative operation MR system. (a) is in side of user 
A and (b) is in side of user B 

7. Conclusion and Future work 

We have presented a framework of collaborative MR workspace with shared three 
dimensional vision based on stereo video transmission, established and experimented for 
collaborative operation. The system provide a 3D-like operating interface by a CG indicator. 
Though the system is tested successfully for the data transmission in both IPv4 LAN and 
over three layers of node point with IPv6 environment there still several tasks need to be 
accomplished in future work.  The one is although we regard a CG indicator as 3D CG 
models now, for a widely use more 3D CG may need to be added into virtual space and 
operated in shift, rotate, and spin, as an extended function in future. The second is that 
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though the size of video frame used in now system is 640*480 pixels we plan to test more 
larger image,  such as high resolution image, in the collaborative operation system both for 
testing its performance and for more wide use. Moreover in future work the performance 
evaluation for both operation feeling and time response is also an important task which is 
should be done. Moreover our future work will try to focus on realizing more desired 
dreams, including multi-stereo vision construction, natural indicating operation, and 
viewpoint detection, in addition to the ones mentioned above.   
Thanks again for sponsoring this research by the national project of demonstrative 
application of China Next Generation Internet (CNGI).  
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1. Introduction 

In the research on multiple autonomous mobile robots such as RoboCup, some methods for 
obtaining  the environmental information over all circumferences used an omnidirectional 
vision sensor, were proposed. In case of the research using the omnidirectional camera 
(called omni-camera), only one camera is almost used in general. However, the object image 
in the mirror is compressed according to the distance. If the height of the object is uncertain, 
the accurate distance measurement is generally impossible. 
To solve these problems, some researches for the stereo vision system used two omni-
cameras were also proposed. For example, the research for the stereo vision system which 
two omni-cameras are vertically fixed was proposed by J.Gluckman  (Gluckman; Nayar & 
Thoresz, 1998), H.Koyasu (Koyasu; Miura & Shirai, 2002) and T.Matsuoka (Matsuoka; 
Motomura & Hasegawa, 2003). The other approach which two omni-cameras are 
horizontally fixed is proposed by R.Miki (Miki et al., 1999). 
In our laboratory, we have developed a multiple omnidirectional vision system (called 
MOVIS) which three omnidirectional cameras are arranged on an autonomous soccer robot 
like as a horizontal and equilateral triangle (Shimizuhira & Maeda, 2003). As a result, the 
stereo-vision system by the principle of the triangulation is made by each two cameras. The 
purpose of this research is to realize the object recognition and the position measurement of 
the robot accurately in real time. Furthermore, we propose the real-time object position 
measurement and the self-localization method for the autonomous soccer robot with 
MOVIS.
On the other hand, there are some researches for the autonomous behavior under the 
complicated environment by using fuzzy reasoning. In the research of the behavior control 
in the RoboCup middle-size league, a control system based on the fuzzy potential method 
was proposed by R.Tsuzaki (Tsuzaki & Yosida, 2003), a multi-layered learning system was 
proposed by Y.Takahashi (Takahashi; Hikita & Asada, 2003). Generally, it is well known 
that an operator is easy to express his control knowledge by using fuzzy reasoning. We have 
already proposed a multi-layered fuzzy behavior control method that element behaviors of 
the robot are individually controlled with the behavior decision fuzzy rule in lower-layer, 
and combined them with the behavior selection fuzzy rule in higher-layer (Shimizuhira; 
Fujii & Maeda,  2004) (Maeda & Shimizuhira, 2005).  
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The goal of our work is to acquire the surrounding environment information overall 
circumferences under the complicated environment, and to realize the omnidirectional 
adaptive behavior in an autonomous mobile robot. In this paper, we propose the useful self-
localization method for MOVIS in any environment. To confirm the efficiency of the 
proposed method and system, we performed the measurement and self-localization 
experiment by MOVIS carried on an actual autonomous soccer robot. 

2. Multiple Omnidirectional Vision System 

To acquire the surrounding information in dynamic environment, we developed the 
multiple omnidirectional vision system (MOVIS). Measurement of the distance and 
direction to an object by only vision sensor without active sensors (sonar, infrared sensor, 
etc.) becomes possible by using MOVIS. 

2.1 Hardware of MOVIS 

Three omnidirectional cameras (M1, M2, and M3) with same performances respectively are 
used in MOVIS. In this system, the omni-cameras are horizontally arranged in the 
equilateral triangle on a soccer robot as shown in Fig.1. Sample images of three omni-
cameras are shown in Fig.2. The center of gravity of the robot and the equilateral triangle 
vertically exist in the same point.  

Figure 1. Overview of MOVIS 

By the line extended from the center of gravity of the equilateral triangle to each vertex 
point, the range of the acquisition of images are divided into three areas which each two 
cameras perform as the stereo vision within 120 degrees (Area A, B and C in Fig.1). Stereo 
visions in each area provide the precise distance information by the principle of 
triangulation. 
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a) Camera M1                             b) Camera M2                             c) Camera M3

Figure 2. Camera Images of MOVIS 

2.2 Scanning Method of Omni-directional Camera 

In general, the extraction of the selection area in an image is performed after making a 
binary format image and saving an array. The scanning process on Cartesian coordinates 
includes some useless searches out of an image in the omni-directional camera, but scanning 
on Polar coordinates has the efficient search performance because of its circular image (see 
Fig.3). In this method, after scanning process on Polar coordinates, the color information in 
Cartesian coordinates is obtained by the following transformation. In this equation,  and r 
show the parameters in Polar coordinates and x and y in Cartesian coordinates. 

 (1) 

 (2) 

y

x

y

x

r

Cartesian

Coordinates

Polar

Coordinates

Camera Image

Figure 3. Scanning Method of Omni-directional Camera 

2.3 Object Recognition by MOVIS 

In our method, we adopted the scanning method based on Polar coordinates for the efficient 
image processing. At first, we count the number of extracted selection pixels in the binary 
format image in Polar coordinates and save it to the array arranged according to the 
orientation angle. Next, the panorama information for objects is obtained from the 
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histogram made by the extracted pixel number in the array. By setting up the threshold 
value of pixel number, we are able to find the desired object. Fig.4 shows a histogram 
example in Polar coordinates for three omni-directional cameras. 
Generally, we must reduce noises in the preprocess of image by compressing and enlarging. 
However, by using this histogram, we easily recognize the object tuning the threshold 
adaptively except the noise reduction process. By this method, the load of image processing 
is decreased. 
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Figure 4. Extracted Pixel Histogram of Camera Image 

2.4 Position Measurement by MOVIS 

Outline of the overall measurement process of MOVIS is shown as below. The measurement 
process of the object position and the self-localization used in MOVIS has four main 
processes. 
1. Object Position Measurement in Robot Coordinates 
2. Self-Localization in Absolute Coordinates 
3. Self-Localization after Measurement Error Correction 
4. Modification of Absolute Object Position 
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Figure 5. Structure of MOVIS 
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In the position measurement, an object position A(xa,ya) in Fig.5 is obtained by using omni-
camera M1 and M2 in the robot coordinates. In the view point of M1M2, a slant angle of AM1

is ( 1- /6)[= 1], that of AM2 is ( 2-5 /6)[= 2]. The distance between the center of gravity of 
the robot and the center of camera is assumed as L. As a result, a position (xa,ya) of the object 
A in the robot coordinates is calculated by the following equations.  

  (3) 

 (4) 

3. Self-Localization by MOVIS 

In this research, a half field of RoboCup middle-size robot league was constructed for the 
measurement experiment. The center and the corner of soccer goals were used as a 
landmark for the self-localization in this experiment. In this section, we propose two 
different measurement methods for the self-localization of a soccer robot and the mixed 
criterion of these methods. 

3.1 Method1 

Method 1 is the measurement method used the center of both goals as the landmark. The 
coordinate axis in the absolute coordinates is shown in Fig.6. The origin point is fixed in the 
center of the soccer field. P and Q show the center of goals, and P1, P2, Q1, and Q2 show the 
edge of goals with the width Fw and the depth Fd from the origin of the field. These absolute 
positions are used as landmarks in the proposed method. 
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Figure 6. Self-Localization in Absolute Coordinates 
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Moreover, the absolute position of the center of gravity of the robot R is assumed as (XR,YR)
and the slant angle of x axis of the robot coordinates in the absolute coordinates is assumed 
as .
In the robot coordinates, assuming that relative positions of the landmark P and Q obtained 
from the position measurement are p(xp,yp) and q(xq,yq) respectively, the landmark's 
absolute positions (XP,YP) and (YQ,YQ) are described as the following equations. 

 (5) 

 (6) 

where the yellow and blue goal are used as the landmark P(XP,YP) and Q(XQ,YQ) in the 
experiment respectively. 
The center of the gravity position (XR,YR) of a robot in the absolute coordinates is calculated 
by these equations as the following equations. 

  (7) 

  (8) 

  (9) 

  (10) 

 (11) 

By our experimental results, we confirmed that the self-localization performance in X axis 
orientation is relatively good in the accuracy of the position estimation, but the 
measurement in Y axis has some errors because the distance data error of MOVIS has quite 
larger than the direction data error. 

3.2 Method2 

Method 2 is the measurement method used the corners of both goals as the landmark. As 
Fig.6, after the robot measures the corner edge of both goals, P (=angle of P1RP2) as the 
parallax angle for both edges of a goal P and Q (=angle of Q1RQ2) as that of a goal Q are 
obtained. The radius of a circumscribed circle for triangles of P1P2R and Q1Q2R are shown 
in the following equations. 
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  (12) 

  (13) 

where Fw means the distance between a center and each corner edge of a goal. 

Next, the absolute position of the center of each circumscribed circle PC(XPC,YPC) and 
QC(XQC,YQC) is calculated as follows. 

  (14) 

  (15) 

  (16) 

where Fd means the distance between a center line and a goal line. 
Therefore, the intersection of these circumscribed circles shows the robot position. The self-
position of the robot R(XR,YR) is decided by the following equations. 

  (17) 

  (18) 

This method has relatively high performance of the self-localization for the Y axis 
orientation, but the measurement for X axis orientation includes some errors. As this reason, 
we consider that larger errors are generated in X axis orientation rather than Y axis 
orientation in the calculation for the intersection of these circumscribed circles. 

3.2 Self-Localization Method 

Two above-mentioned methods have merits and demerits. Therefore, we proposed a 
composed method with each merit in this research. By composing two method, the self-
localization method with better performance in all measurement area is constructed. In this 



Scene Reconstruction, Pose Estimation and Tracking 162

method, we compose Method 1 with better performance in X axis orientation and Method 2 
with better performance in Y axis orientation.  
In the estimation of X position, we adopt Equation (7) and (9). For the improvement of the 
measurement accuracy, the absolute robot position in X axis is calculated with the average 
of these equations. 
In the estimation of Y position, we adopt Equation (18) with better performance in Y axis 
orientation. Finally, the self-localization position of the robot is calculated by the following 
equation.

  (19) 

  (20) 

4. Experiments 

We actually performed the measurement experiment by MOVIS and the shoot experiment 
by a soccer robot with the multi-layered fuzzy behavior control method. The experiment 
was executed by using three IEEE1394 digital omni-cameras and a notebook PC with 
Celeron 600A MHz CPU and Vine Linux 3.0. 

4.1 Experiment for Performance of MOVIS 

In order to confirm the precision of MOVIS, we carried out the measurement experiment of 
the ball direction and distance from the robot with MOVIS. This experiment was performed 
at the wide space with a uniform light source. We used an orange soccer ball regulated in 
the RoboCup middle-size league as the measurement object. The origin of the absolute 
coordinates is a center of the measurement space within 800cm square and the measurement 
place are 289 lattice points at each 50cm interval from -400cm to 400cm. Omni-cameras were 
fixed at 25cm height from the floor during the experiment. 
Fig.7 shows measurement results for the distance and direction error in polar coordinates. 
Results for a single omni-vision are shown in Fig.7a),b), the vertical stereo omni-vision 
(Koyasu, Miura & Shirai, 2002) in Fig.7c),d) and MOVIS with the error correction in 
Fig.7e),f). In the measurement experiment of the single omni-vision, large particular errors 
were found in the area around (-400, -400). We confirmed a single omni-vision has an 
individual difference such as this type of error. The absolute average of the distance error 
was 92.63 cm in this experiment. On the other hand, we confirmed the omni-vision has an 
ability of the precise measurement for the direction by the result that the absolute average of 
the direction error was 0.61 degrees. 
In Fig.7c) to f), the absolute average of the direction error in the vertical stereo omni-vision 
and MOVIS was relatively small within -1.5 to 1.5 degrees as same as a single omni-vision. 
Moreover, the absolute average of the distance error in MOVIS was remarkably smaller than 
that of the vertical stereo omni-vision. By this results, we could confirm the performance of 
the precise distance measurement of MOVIS. 
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Figure 7. Results of Measurement Experiment 

4.1 Experiment for Self-Localization 

Furthermore, Fig.8 to 16 shows the results for the measurement error of the self-localization. 
These results show the self-localization error measured on nine spots A to I in miniature 
field with 3.5m width and 4m depth while a robot rotates on a spot. In these figures, for 
example, Position A means the self-localization experimental result executed in place of 
point A in Fig.6. Left graph shows the position error estimated by the proposed self-
localization method and right figure shows the real position plotted in the field.  
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Figure 8. Experimental Result of Self-Localization (1) 
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Figure 8. Experimental Result of Self-Localization (2) 

As a result, we confirmed that the proposed method is useful for the self-localization. 
Especially, the performance of self-localization on Y axis (spot B, E, and H) was better than 
that on the other spots. Maybe we consider that the reason is caused by the measurement 
error of the distance in far area. In all results, the result on the spot A and C was the worse 
because the robot could not successfully execute the color extraction of blue goal near the 
yellow goal area. We think that we are able to make better the performance of these areas by 
improvement of lighting environment. 

5. Conclusions 

The multiple omnidirectional vision system (MOVIS) with three omni-cameras and its self-
localization method for the autonomous mobile robot were proposed in this paper. 
Moreover, the experiment of the measurement performance and self-localization by MOVIS 
on the real miniature soccer field was carried out by using the proposed method. As a result, 
we confirmed that the measurement of MOVIS is remarkably more accurate than that of a 
single omni-vision and the vertical stereo omni-vision, and the self-localization performance 
is relatively useful in all area of soccer field. In the near future, we would like to develop the 
real soccer robot with MOVIS and the proposed self-localization method. 



Scene Reconstruction, Pose Estimation and Tracking 166

6. References 

Koyasu, H.; Miura, J. & Shirai, Y. (2002). Estimation of Ego-Motion and Its Uncertainty for a 
Mobile Robot Using Omnidirectional Stereo, Proceedings of the 20th Annual 
Conference of the Robotics Society of Japan, CD-ROM, 3A24 [in Japanese] 

Matsuoka, T.; Motomura, A. & Hasegawa, T. (2003). Real-time Self-Localization Method in a 
Dynamically Changing Environment, Proceedings of the 2003 IEEE/RSJ 
International Conference on Intelligent Robots and Systems, 1234-1239 

Gluckman, J.; Nayar, K. & Thoresz, J. (1998). Real-Time Omnidirectional and Panoramic 
Stereo, Proceedings of Image Understanding Workshop, 299-303 

Miki, R.; Yamazawa, K.; Takemura, H. & Yokoya, N. (1999). A Remote Surveillance System 
Using Omnidirectional Sensors, Technical Report of IEICE, PRMU98-177, 7-14 [in 
Japanese]

Shimizuhira, W. & Maeda, Y. (2003). Self-Localization Method Used Multiple 
Omnidirectional Vision System, Proceedings of SICE Annual Conference 2003, 2796-
2799

Tsuzaki, R. & Yosida, K. (2003). Motion Control Based on Fuzzy Potential Method for 
Autonomous Mobile Robot with Omnidirectional Vision, Proceedings of the Robotics 
Society of Japan, Vol.21, No.6, 656-662 [in Japanese] 

Takahashi, Y.; Hikita, K.  Asada, M. (2003). Incremental Purposive Behavior Acquisition 
based on Self-Interpretation of Instructions by Coach, Proceedings of the 2003 
IEEE/RSJ International Conference on Intelligent Robots and Systems, 686-693 

Shimizuhira, W.; Fujii, K. & Maeda, Y. (2004). Fuzzy Behavior Control for Autonomous 
Mobile Robot in Dynamic Environment with Multiple Omnidirectional Vision 
System, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and 
Systems (IROS 2004), CD-ROM, SA2-M3 

Maeda, M. & Shimizuhira, W. (2005). Omnidirectional Adaptive Behavior Control for 
Autonomous Mobile Robot, Proceedings of Second International Conference on 
Modeling Decisions for Artificial Intelligence (MDAI 2005), 252-263 



10

A Tutorial on Parametric Image Registration 
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1. Resume 

This chapter introduces the reader to the area of parametric image registration, from a 
beginner’s point of view. Given a model, an input image and a reference image, the 
parametric registration task is to find a set of parameters (of the model) that transform the 
input image into the reference image. This chapter reviews models of the general projective, 
affine, similarity and Euclidean transformations of images, and develop a full example for 
affine and projective transformation. It also describes two new methods of computing the 
set of image derivatives needed, besides the classical method reported in the literature. The 
new methods for computing derivatives are faster and more accurate than the classical 
method. 

2. Introduction 

Image registration is the process of overlaying two or more images of the same scene taken 
at different times, from different viewpoints or by different sensors [Zitova and Flusser, 
2003]. In this chapter, only two images are considered: a reference image and an input 
image. The idea is to find a way to convert the input image into another image, similar to 
the reference image. If the model, that transforms the input image, has a small set of 
parameters, the task is called parametric image registration. Otherwise, the task it is called 
non-parametric registration [Calderon and Marroquin, 2003] (e.g. a set of parameters for 
each pixel of the image). 
The literature is plenty of parametric registration techniques. Some of them are based on 
Spatiotemporal Energy [Adelson and Bergen, 1986], [Barman et al., 1986] and [Heeger, 
1987], other methods are based on correlation [Kaneko et al., 2002] [Kaneko et al., 2003], 
others are based on the minimization of the Sum of Squared Differences (SSD) [Lai and 
Vemuri, 98], [Szeliski and Coughlan, 1994] (also named radial basis function in [Zitova and 
Flusser, 2003]), and others are based on optical Flow [Barron et al., 1994]. 
This tutorial describes in detail a SSD technique which can be extended easily to the M 
Estimators (for different M estimators see [Huber, Peter J. 2003]). The literature on 
parametric images registration often reports only advanced applications of this technique, 
but research papers do not address details of the implementation of these kinds of methods. 
Also surveys have been writing for experts (e.g. [Zitova and Flusser, 2003]) and this area is 
not fully covered in computer vision books. To our knowledge there is not a tutorial of 
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parametric image registration and this chapter tries to introduce beginners in computer 
vision into this area. 
The rest of this chapter is organized as follows. Section 3 describes the registration problem 
as an optimization problem and Section 4 introduces the bilinear interpolation to compute 
accurate transformations of images. Section 5 introduces some basic transformations, from 
Euclidean to general projective transformations. Section 6 shows three methods to compute 
the set of derivatives of images needed, two new methods and the classical method reported 
in the literature. The first new method is a fast method based on interpolation of derivatives 
of the input image. The second method is the classical method based on derivatives of the 
transformed image. The third method is a new one and it is a more accurate and complete 
method than the classical method. Section 7, gives minimization details for an error function 
and subsection 7.1 presents the well known Levenberg-Marquard non-linear optimization 
method [Nocedal and Wright, 1999], commonly used in many computer vision problems. 
Experimental results are shown in section 8 using the three methods of computing 
derivatives. Results confirm the accuracy of the third method of computing derivatives. 
Finally, some conclusions are given in Section 9. 

3. Parametric Registration Problem 

Let I(i,j) denote a gray level image (typically an integer value from 0 to 255), for integer 
coordinates <i,j>, I(i,j) gives the intensity value of the pixel associated to position <i,j> (see 
Figure 1), and Ir(i,j) denotes the reference image. 
If the set of parameters is denoted by Θ, the parametric registration problem is to find a set 
Θ that minimizes an error function E, between the transformed input image It(i,j) and the 
reference image. Considering the SSD, E can be expressed in the following way: 

( ) ( )( ) ( )( )
>∈<∀

−ΘΘ=Θ
rIji r jiIjiyjixIE

,

2
,,,,,,)(  (1) 

For instance, given a position x=i+1 and y=j, one pixel Ir(i,j) is going to be compared with 
pixel I(i+1,j). This situation is equivalent to have a transformed input image, It(i,j)=I(i+1,j),
where all pixels of the input image, have moved to the next position upwards (see Figure 1). 
The error E compares each pixel, between It and Ir, at the same position <i,j>. With the right 
Θ∗, image It and Ir should be very similar and E should reach a minimum value. The new 
image It (i,j) can be computed by  

( ) ( ) ( )( )jiyjixIjiIt ,,,,,, ΘΘ=  (2) 

i

j

i

j

Image IImage It

Figure 1. Computing transformed image It from I 
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If x(Θ ,i,j) and y(Θ ,i,j) are outside of the image I, a common strategy is to assign zero value 
which represents a black pixel. But, What happen when x(Θ ,i,j) and y(Θ ,i,j) have real values 
instead of integer values?. Remember that image I(x,y) have only valid values when x and y
are integer values. An inaccurate method to solve this problem is to use their nearest integer 
values. Next section presents a much better method to solve this problem. 

4. Bilinear Interpolation 

If xi and xf are the integer and fractional part of x (x = xi+xf), and yi and yf the integer and 
fractional part of y (y = yi+yf), Figure 2 illustrates the bilinear interpolation method 
[Faugeras, 1993] to find I(xi+xf, yi+yf), given the four nearest pixels to position <xi+xf, yi+yf>:
I(xi, yi), I(xi+1, yi), I(xi, yi+1) and I(xi+1, yi+1) (image values at particular positions are 
represented by vertical bars in Figure 2). First two linear interpolations are used to compute 
two new values (Inew(xi, yi+yf) and Inew(xi+1, yi+yf)) and then another linear interpolation is 
used to compute the desired value I(xi+xf, yi+yf) from the new computed values: 
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 (3) 

Using the bilinear interpolation, a smooth transformed image is computed. Next section 
introduces a hierarchy of transformations that maps lines, in the input image, to lines in the 
transformed image [Hartley and Zisserman, 2000]. 

Figure 2. Using the Bilinear Interpolation 

5. Basic Transformations 

In this section Euclidean, Similarity, Affine and Projective transformations are reviewed 
briefly. In order to have a uniform frame of reference for these transformations, 
homogeneous coordinates are going to be used [Hartley and Zisserman, 2000]. A point 
<x,y> in a plane is represented in homogeneous coordinates (HC) by a vector of 3 
coordinates, [xh, yh, wh]T, and both coordinates are related by x=xh/wh and y=yh/wh. In HC, a 
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vector v and κ v ( ℜ∈κ ) represent the same point, an important advantage of using 
homogeneous coordinates is that original and transformed positions, as well as composition 
of transformations, are related by matrix multiplications [Hartley and Zisserman, 2000]. 
Figure 3, illustrates the Euclidian, Similarity, Affine and Projective transformation. 

Figure 3. Linear Transformations in Homogeneous Coordinates: (a) Original, (b) Euclidean, 
(c) Similarity, (d) Affine and (e) Projective 

5.1 Euclidean Transformations 

In the case of Euclidian Transformation, angles and length of line segments are preserved, 
and only translations and rotations are allowed (see Figure 3(b)). This transformation have 
three parameters, Θ = {φ, ti, tj}, where φ is the rotation angle, and ti, tj are translation in 
directions i and j respectively. Using HC, x(Θ,i,j)=xh/wh and y(Θ,i,j)=yh/wh, can be represented 
by:
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5.2 Similarity Transformations 

Besides translations and rotations, an isotropic scaling given by s is allowed (the same in 
both directions). Under this transformation, objects can be bigger or smaller, but their 
original shape is preserved (see Figure 3 (c)). The matrix representation, Hs, for this 
transformation is given by 
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5.3 Affine Transformations 

An affine transformation is the most general transformation that preserves parallelism 
between lines (see Figure 3 (d)). This case is represented by Ha and has six parameters, 
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Where θ2 and θ5 represent the translation in both directions. This transformation allows 
rotation, scaling, shearing, translation or combinations of these transformations. 

5.4 Projective Transformations 

This is the most general transformation that maps lines into lines, and it generalizes an 
affine transformation. The matrix Hp for this transformation has nine elements (actually only 
eight independent ratios among the nine elements of Hp, because in HC proportional vectors 
represent the same vector). An example of this transformation where parallelism is not 
preserved is shown in Figure 3(e). In most interesting cases, projective transformations Hp,
has the form: 
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Next section develops examples of finding the set of parameter for affine and projective 
transformations.

6. Finding the Set of Parameters 

In order to compute a set of parameter Θ, equation (1), can be rewritten as follows 
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ρ(e) is an error function which could be a quadratic function or any M-estimator (see 
[Huber, Peter J. 2003]).  In case of a quadratic function the solution is known as Least 
Squares. Given a set Θ = {θ0, … , θk, … , θK} of K parameters, E will have a minimum value 
when 0/ =∂∂ kE θ  for all k. The k-th element of the gradient value kk EG θ∂∂= / ,  can be 
computed as 
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In the literature, the derivative  
ijij ee ∂∂ /)(ρ  is called the influence function [Huber, Peter J. 

2003] and it is represented by ϕ(eij). In the case of a quadratic error function ϕ(eij) =2eij. If we 
introduced the gradient vector G(Θ)=[G0(Θ), G1(Θ), … GK(Θ)]T and the vector Jij(Θ) as 
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G(Θ) can be written in a single one :  
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Let’s develop an expression for each term of the vector Jij(Θ)=[Jij0(Θ),Jij1(Θ), … JijK(Θ)]T from 
equation (8) so an expression for Jijk(Θ) can be derived as:
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Using the chain rule from the differential calculus, the desired value can be computed as 
follows, 
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Using matrix notation ),(),,()( yxIjiMJij ∇Θ=Θ  with 
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M will called the Coordinate Matrix Model (CMM) which depends of the characteristics of 
the model and ),( yxI∇  the gradient vector respect to x and y (remember that the image only 
have integer coordinates values). Subsection 6.1 presents the CMM for affine and projective 
transformations and subsection 6.2 presents three methods of computing the gradient 
vector ),( yxI∇ .

6.1 Coordinate Matrix Model 

An affine transformation given by equation (6) can be rewritten as follows. 
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By definition of CMM given by equation (14), the CMM, for affine transformation, has a 
simple form given by equation (17). 
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In a similar way, the projective transformation (eq. (7)), can be rewritten as  
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The CMM, in this case, is given by equation (19) 
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6.2 Computing Derivatives of Images 

Here we present three methods to compute the terms not previously described in eq. (14). In 
all the three methods, derivative of images are needed which can be approximated by the 
following central-difference approximations [Trucco and Verri, 1998]: 
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More accurate approximations consider more pixels in the neighborhood [Trucco and Verri, 
1998]:
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An even better method is called derivative of Gaussian Filters [Ma et al., 2004] [Romeny, 
1994], and it computes much smaller noise responses, compared with the previous ones. The 
Gaussian function and its derivative are given, respectively, by 
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The computation of image derivatives is accomplished as a pair of 1-D convolutions with 
filters obtained by sampling the continuous Gaussian function and its derivative, 
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σ (in pixels units) controls the Gaussian form, and usually w = 3 σ. If the window defined by 
w is bigger, then more pixels in the neighborhood are considered. In equation (23), the 
operator (*) represents convolution.  
Now three methods, to compute the gradient vector of the input image, ( ),( yxI∇  in eq. (15)) 
are presented in next section. Remember that x and y in general can be real numbers. 

6.2.1 Method 1: Using derivatives of the input image 

Considering that 2, Nji >∈< and 2, Ryx >∈< , if ijiI ∂∂ /),(  and jjiI ∂∂ /),(  are computed 
using one of the previous methods, a simple and fast method to compute xyxI ∂∂ /),(  is to 
use bilinear interpolation from ijiI ∂∂ /),(  to get an approximate value. In a similar way, 

yyxI ∂∂ /),(  can be estimated from jjiI ∂∂ /),( .

6.2.2 Method 2: Using approximate derivatives of the transformed image 

Considering the transformed image It and from equation (2), another approximation is given 
by
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Because this approximation is reported in many papers, we named it the classical method. 

6.2.3 Method 3: Using derivatives of the transformed image 

Method 2 considers It(i,j) = I(x(Θ ,i,j),y(Θ ,i,j)), and also considers derivatives given by 
equation (24). The first one is correct, but not the second one, because increments in x does 
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not necessarily correspond to the same increments of i (and the same argument with y and 
j). The right derivatives can be computed using the chain rule, as follows: 
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Using matrix notation equation (25) can be rewritten as 
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Lets define N(Θ,x,y) as the Derivative Correction Matrix (DCM) and ( )jiIt ,∇  as the gradient 
vector image of Image It and it can be computed using, for instance, the derivative of 
Gaussian Filter previously mentioned.   
Now a closed expression for the matrix N, in case of a projective transformation, is 
developed. To compute the elements of DCM matrix, explicit formulas for i and j are 
needed, for this reason equation (18) is rewritten as follows: 
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Then the system of equation given by (27) is solved using the well known Cramer’s rule 
from linear algebra and its solution for i and j are given as:
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From equation (28) the elements of matrix N are derived by definition given in equation (26) 
and after a little algebra the DCM matrix is given as: 
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When the projective transformation is only an affine transformation the vector parameter 
can be written as Θ = [θ0, θ1, θ2, θ3, θ4, θ5, 0, 0] and the DCM, in this case, is 
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In the translation transformation case, the parameter vector can be written as Θ = [1, 0, θ2,
0,  1, θ5, 0, 0] and its DCM is 
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Note, that only for translation model, this method and method 2 are the same. 

7. Minimization procedure 

Let ( ) k
n

k EG θ∂∂=Θ / , (k=0, …, K), Θ n be an initial set of parameter values, and Θ n+1 an 

improved set of parameter values, where n
k
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k =δθ , such that the ( ) 01 =Θ +n

kG  (for 

all k). To compute the set of increments, functions kG  can be approximate using the Taylor 
expansion using only first order derivatives: 
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 k=0, 1, ..K (33)

Next we can compute the set of increments, doing ( ) 01 =Θ +n
kG  and solving the system of K

equations of the form: 
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θ
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θ
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1

0

0

 k=0, 1, ..K (34)

 In matrix form we have, 

GH =ΔΘ  (35) 

Where
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(36)

Once this system of equation is solved, a new set of parameter Θ n+1 can be computed, and 
using the same procedure another set of parameter Θ n+2 is estimated, and so on. The 
iterative process ends when all the increments are very small. 
In the literature matrix H is known like the Hessian matrix. If full derivatives for the 
elements ( ) ( ) c

n
r

n
rc GH θ∂Θ∂=Θ /  of the Hessian matrix (where r and c represents the row 

and column of H) are computed from equation (9), then results the Newton's method 
[Nocedal and Wright, 1999]. But, if we discard second order derivatives, the method is 
called Gauss-Newton (GN) [Nocedal and Wright, 1999], and it is commonly used due to its 
simple form and because it warranties to have a semi positive defined matrix H. The Matrix 
H for the GN method is presented in equation (37)  

( )
>∈<∀ ∂

∂
∂
∂

=
∂∂
Θ∂=Θ

rIji c

ij

r

ij
ij

cr

n
n

rc

ee
eEH

,

2 )(
)(

θθ
ψ

θθ
 (37) 

Where 
ijijij eee 22 /)()( ∂∂= ρψ  and for a quadratic error function ψ(eij)=2. In matrix form, the 

equation (37) can be rewritten as 

( ) [ ] [ ]
>∈<∀

ΘΘ=Θ
rIji

Tn
ij

n
ijij

n JJeH
,

)()()( ψ  (38) 

Unfortunately, the Newton or Gauss-Newton not always reaches a minimum value for the 
error E, because only first order derivatives in the Taylor Expansion are used. More robust 
and better methods, like the one presented in subsection 0, expand the Newton or Gauss-
Newton to avoid the case when E(Θ n+1) > E(Θ n).

7.1 The Levenberg-Marquard Method 

The Levenberg-Marquard method (LM) [Nocedal and Wright, 1999] is a non-linear iterative 
technique specifically designated for minimizing functions which has the form of Sum of 
Square functions, like E. At each iteration, the increment of parameters ΔΘ, is computed 
solving the following linear matrix equation: 
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( ) GH =ΔΘΛ+  (39) 

Where G and H are defined by equation (11) and (38) respectively for GN, Λ is a diagonal 
matrix Λ=diag(λ, λ, ..., λ), and λ is a variable parameter at each iteration. 
The process starts with the input image, I, and the reference image, Ir, and initial values for 
parameters Θ 0. The
Algorithm 1 describes the LM method. 

1. Pick a small value for λ (say λ=0.001), an initial value for Θ 0, an error function (for 
instance ρ(e) = e2 ) and set n=0.

2. For a given Θ n, compute the transformed image Itn (eq. (2)) applying bilinear 
interpolation to improve the quality of the image using equation (3). 

3. Compute the total error, E(Θ n) using equation (1). 
4. Compute a new set of parameter using the following steps 

a. Compute M(Θ n,i,j) and N(Θ n,x,y) using, the equation (19) and  (29)  for 
projective transformation or the equation (17) and (31) for affine 
transformation, respectively. 

b. Compute the Gradient vector image ),( jiI n
t∇  applying a derivative of 

Gaussian Filter (eq. (23)) 
c. Compute the matrix ( )jiIyxNjiMJ n

t
nnn

ij ,),,(),,()( ∇ΘΘ=Θ
d. Compute the Gradient vector G(Θ n) and Hessian matrix H(Θ n) by equation 

(11) and (38) respectively. 
e. Solve the linear system of equations given by (39) for ΔΘ, and then calculate 

E(Θ n + ΔΘ)
5. If E(Θ n + ΔΘ) >= E(Θ n), increase λ by a factor of 10, and go to step 4. If λ grows very 

large, it means that there is no way to improve the solution Θ n and the algorithm ends 
with this solution Θ * = Θ n.

6. If E(Θ n + ΔΘ) < E(Θ n), decrease λ by a factor of 10. Set Θ n+1 = Θ n + ΔΘ , n=n+1 and go 
to the step 2. 

Algorithm 1. The Levenberg-Marquard Method 

 Note when λ = 0, the LM method is a Gauss-Newton method, and when λ tends to infinity, 
ΔΘ  turns to so called steepest descent direction and the size of increments in ΔΘ  tends to 
zero.

8. Experimental results 

To test the methods previously described, a computer program was built under the Redhat 9 
Linux operating System, using the C language. All the experiments were running in a PC 
Pentium 4, 2.26 Ghz. and we use standard routines from the Free Gnu Scientific library 
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(GSL) to solve the linear system of equations. The error function was defined as a quadratic 
function (ρ(e) = e2 with ϕ(e) = 2e and ψ(e) =2).
The PGM image format was selected because its simplicity to load and save gray level 
images with 256 gray levels, from 0 to 255. The PGM format is as follows, 

P5 {nl} 
# CREATOR: The GIMP's PNM Filter Version 1.0 {nl} 
640 480 {nl} 
255
<I(0,0)><I(0,1)>...<I(0,639)><I(1,0)><I(1,1)> ...

Where P5 means gray level images (P6 is reserved for color images), # starts a comment, 640 
and 480 is the width and height of the image respectively, and {nl} is the new line character. 
<I(i,j)> is a single byte (an unsigned char in C) and they are ordered from left to right of the 
first row of pixels, then the second row of pixels, and so on. 
Figure 4 shows two binary input images (Figure 4 (a) and Figure 4 (b)) and the associated 
reference image (Figure 4 (c)). Sequences of images for the three methods, to compute 
derivatives, are shown in Figures 5, 6 and 7; the number, below each Figure, indicates the 
number of iteration for Algorithm 1.  In these cases the input image was the image shown in 
Figure 4 (a) and derivative of Gaussian Filter with σ = 6 was used. The numerical results for 
Algorithm 1, are presented in Table 1.  The results of this Table show us, that methods 1 and 
3 find the right transformation (a very low error), method 2 have the highest error and 
method 1 is the fastest. 

Figure 4. Input images (I1 and I2) and the reference image Ir. Images are of dimension 300 X 
300

Method Time (seconds) Iteration Error 

1 11 88 3.78 E-9 

2 18 41 1902.6 

3 18 49 3.22 E-9 

Table 1. Comparing the three derivative methods for the test case of Figure 4(a) and (c) 
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Figure 5. Comparing method 1, sequence a-b-c-d-e. The number of iteration of each image is 
shown

Figure 6. Comparing method 2, sequence a-b-c-d-e. The number of iteration of each image is 
shown

Figure 7. Comparing method 3, sequence a-b-c-d-e. The number of iteration of each image is 
shown
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Numerical results for images of Figure 4 (b) and (c) are shown in Table 2. Again Methods 1 
and 3 find the right transformation (a low error), but Method 2 have a higher error. In this 
case Method 1 is also the fastest. 

Method Time (seconds) Iteration Error 

1 12 70 1.59 

2 26 59 51.51 

3 27 44 1.59 

Table 2. Comparing the three derivative methods for the test case of  Figure 4(b) and (c) 

Figure 8(a) and 8(b) shown an input image and the associated reference image respectively, 
with dimensions 256 X 256. In this case, the case, the Algorithm 1, was applied two times; at 
first with derivatives of a Gaussian function with σ = 10  and then with σ = 1. In the first 
case with σ = 10, derivatives include information of a big window around the desired pixel 
value and so the derivatives are good enough to guide the search near to the right set of 
parameters. In the second, with σ = 1, derivatives are more accurate, given the previous set 
of parameters, and the final error, E, gets smaller values than in the first case.  Final results 
for the three methods are shown in Figure 9. In this case only method 3 was able to find the 
right transformation. 

(a)

(b)

Figure 8. Another case of test. a) Input image and b) Image Reference 
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(a) 1                  (b) 2  

(c) 3 

Figure 9.  Final results of the three methods for image of Figure 8 

9. Conclusions 

A tutorial, with all the details related to the parametric image registration task, has been 
presented. Also two new methods (Method 1 and Method 3) are presented besides the 
classical method to compute derivatives of images. 
Method 1 computes the image derivatives faster than the other two methods, but it does not 
give accurate estimations. Methods 2 and 3 take more time because they compute 
derivatives of the transformed image (at each iteration) while method 1 computes 
derivatives of the input image only once. 
Method 3 is an improved version of method 2 because it takes into account the exact 
derivatives needed. However the classical method 2, reported in the literature is the same as 
the method 3 under translations. Experiments confirm the poor estimation computed by 
method 2 when rotations, scaling, or an affine transformation are involved. 
In general, derivatives of images with big σ values are recommended when the right 
transformation is far away from identity, in other words, when big translations, rotations, 
scaling, etc., are involved. In contrast, small values of σ are recommended to get more 
accurate results. In fact, we mixed both strategies, big values at first and then small values. 
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1. Introduction  

Systems of multiple baseline stereo vision (Okutomi & Kanade, 1993 and Kanade et al., 
1997) have been proposed and used in various fields. They require cameras to synchronize 
with one another to track objects accurately to measure depth. However, inexpensive 
cameras such as Web-cams do not have synchronous systems. 
A system of tracking human motion (Mori et al., 2001) and a method of recovering depth 
dynamically (Zhou & Tao, 2003) from unsynchronized video streams have been reported as 
approaches to measuring depth using asynchronous cameras. In the former, the system can 
obtain the 2D position of a contact point between a human and the floor, and the cycle of 
visual feedback is 5 fps on average. In the latter, the method creates a non-existing image, 
which is used for stereo triangulation. The non-existing image is created from the estimated 
time delay between unsynchronized cameras and optical flow fields computed in each view. 
This method can output a depth map at the moment of frame t-1 (one frame before the 
current one), not the current frame. 
We propose a method of pseudo-stereo vision using asynchronous multiple cameras. 
Timing the shutters of cameras asynchronously has an advantage in that it can output more 
3D positions than a synchronous camera system. The 3D position of an object is measured as 
a crossing point of lines in 3D space through the observation position on the last frame and 
the estimated 3D position using the previous two frames. This makes it possible for the 
vision system to consist of asynchronous multiple cameras. Since the 3D position is 
calculated at the shutter timing of each camera, the 3D position can be obtained from the 
number of cameras x 30 points. 
This chapter is organized as follows. Section 2 describes a method of measuring the 3D 
position using asynchronous multiple cameras. Section 3 reports experimental result on the 
recovery of motion when an object is moved in virtual 3D space, and discusses the 
effectiveness of the proposed method. Section 4 describes some experimental setups and 
reports experimental results using real images of an object moving at high speed. Section 5 
discusses the processing time and enhancement of n cameras. Finally, Section 6 summarizes 
the method of pseudo-stereo vision. 
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Figure 1. Two possible combinations of shutter timings 

2. 3D position measurement with multiple cameras 

The method of stereo vision, which measures the 3D position of an object, requires two 
images to be captured at the same time to reduce errors in measurement. We investigated a 
method of pseudo-stereo vision taking advantage of the time delay between the shutter 
timings of two asynchronous cameras to calculate the 3D positions of objects. 

2.1 Shutter timings of two cameras 

Two possible combinations of shutter timings by two cameras are outlined in Fig. 1. The first 
(a) is the same shutter timings, which is used in multiple baseline stereo vision,
synchronized by a synchronous signal generator. In a conventional stereo vision system, the 
3D positions can be obtained at a maximum of 30 fps using a normal camera with a fast 
vision algorithm (J. Bruce et al., 2000). 
Figure 1 (b) outlines the other type of shutter timing using asynchronous cameras where 
there is a time delay of δ. When an object moves fast, the stereo vision with this shutter 
timing calculates the 3D position from corresponding points with the time delay. Therefore, 
the estimated 3D position, 

^

,Pt+1 has error, as shown in Fig. 2. This chapter focuses on this 
kind of shutter timing, and proposes a method of calculating the 3D position taking time 
delay  into account, which is unknown. Since our method calculates the 3D position at each 
shutter timing, it is possible to output the 3D position from the number of cameras x 30 
points per second. 
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Figure 2. Error in stereo vision with time delay 

Figure 3. Estimate of 3D position of last frame 

2.2 Estimate 3D position of last frame 

The 3D position, ],,[ tttt zyx=P , of the last frame, t, is estimated from positions 1−tP  and 

2−tP  in the previous two frames as shown in Fig. 3. Where the image in last frame t is 
captured by camera B, the algorithm to calculate the 3D position in last frame t is described 
as follows: 
1. Given the 3D positions in the previous two frames, ],,[ 1111 −−−− = tttt zyxP and

],,[ 2222 −−−− = tttt zyxP , straight line l is calculated by: 
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2. The instant in time when the images are captured to estimate the 3D positions 1−tP  and 

2−tP , are unknown due to asynchronous cameras being used. The maximum number 
of frames for a normal camera is generally 30 fps. Since the maximum time delay is 
assumed to be 1/30 s, the range of locations in 3D position can be estimated by: 
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where Δ is the frame rate (1/30 s). 
3.  Let ][ BBBB

zyx TTT=T  be the translation vector from the origin of the world coordinate 

to the focus point of camera B, and T][B νμλ=r be the vector that denotes the direction 

of the viewing ray, B
rayl , passing through the position on image coordinate ),( BB

tt vu  and 
the focus point of the camera B. Then, viewing ray B

rayl is defined by 

νμλ

BBB
B zyx
ray

TzTyTxl −=
−

=−= . (3) 

The distance, d, is calculated between points ],,[ iiii zyx=P on straight line l and 

viewing ray B
rayl  using: 

( ) ( ) ( ){ } ( ) ( ){ } ( ) ( ){ }2BB2BB2BB,, ziziziyiyiziiii TxTzTzTyTyTxzyxd −−−+−−−+−−−= νλμνλμ . (4) 

Then, the 3D position, Pi , which produces the minimum distance, is selected as t'P  by 
calculating: 

( )[ ]i
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tPiP-tP

Pd
)(

tP
≤≤

=
1

minarg' . (5) 

4. The 3D position may not exist on the viewing ray B
rayl , as shown in Fig. 3, because of 

prediction error. To solve this problem, 3D position tP is calculated as the nearest 

point on viewing ray B
rayl  by: 

( ) BB
2B

BB' Tr
r

rTPt +⋅−= tP . (6) 

If the last frame is camera A, 3D position tP can be calculated by changing the suffix. 

2.3 Calculation of 3D positions of previous two frames 

It is necessary to calculate the previous 3D positions, 1−tP and 2−tP , accurately to obtain the 
current frame using the method described in section 2.2. Where frame t-1 is camera B, the 
position of an object using the image coordinates from camera A at frame t does not have a 
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corresponding point from camera B at the same time, which is needed to calculate the 3D 
position using stereo vision. The predicted point of camera B, )','( B

1
B

1 −− tt vu , corresponding to 

observed point ),( A
1

A
1 −− tt vu  is generated by a basic interpolation technique, as shown in Fig.4. 

The 3D position can be measured by stereo vision using observed point ),( A
1

A
1 −− tt vu  and 

pseudo-corresponding point )','( B
1

B
1 −− tt vu . The algorithm to calculate the 3D position at t 1 is 

described as follows: 

Figure 4. 3D position is estimated using spline curve 
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Estimation of 3D position using spline curve 

The object’s trajectory is estimated by spline-curve fitting (de Boor, 1978). The pseudo-
corresponding point is obtained as the intersection between the trajectory and epipolar line, 
as shown in Fig. 4. The spline curve on the camera image can be calculated from three 
observed points, ),( BB

tt vu , ),( B
2

B
2 −− tt vu , and ),( B

4
B

4 −− tt vu  by: 
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where s is a parameter uniquely determined by (u, v), u = u(s) and v = v(s) are determined by 
s, and Bi,K means the (K 1) dimensional B spline. Here, parameters α and β are solved from 
some input point (u, v). The spline curve can be constructed using parameters α and β. Then, 
the epipolar line (Faugeras, 1993) on camera B is calculated from observation point 

),( A
1

A
1 −− tt vu  on camera A. Let F denote a fundamental matrix of 3x3 which is defined by:

         
  Figure 5. Calculate intersecting point of               Figure 6. Error in the intersecting point 

 spline curve and epipolar line 
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The spline curve has various node points from ),( BB
tt vu to ),( B

4
B

4 −− tt vu , and the intersecting 

point is determined as pseudo-corresponding point )','( B
1

B
1 −− tt vu  on camera B as shown in 

Fig. 5. Then, the 3D position 1−tP  is calculated from pseudo-corresponding point 

)','( B
1

B
1 −− tt vu  and observation point ),( A

1
A

1 −− tt vu  on camera A using stereo vision.  
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3D position 2−tP  at frame t-2 is calculated in the same way as above, i.e., as the intersecting 
point of the spline curve of t-1, t-3, t-5 frames, and the epipolar line from image coordinate 

),( B
2

B
2 −− tt vu of camera B. 

Reliability of estimated position

Angle θ of the intersecting position Fig. 5 is calculated to measure how reliable the 
intersecting position is. There is a case where the spline curve becomes parallel to the 
epipolar line, as shown in Fig. 6. For this reason, the object moves along the epipolar plane. 
Here, the estimated 3D position includes a large amount of error. Therefore, it is necessary 
to reject the outlier causing the error in the 3D position using angle θ.

3. Simulation experiments 

3.1 Recovery of object motions 

We evaluated the method we propose by simulating the recovery of object's movement with 
uniform and non-uniform motion in 3D space (3,000 x 2,000 x 2,000 mm). In the experiment, 
we assumed that n (n= 2, 3) cameras would be mounted at a height of 3,000 [mm]. The 
conventional approach and the proposed method were evaluated using two kinds of 
motion.

• Uniform motion (spiral) : An object moves in a spiral with a radius of 620 mm at a 
velocity of 3,000 mm/s at center (x, y) = (1,000, 1,000) 

• Non-uniform motion : An object falls from a height of 2,000 mm, then describes a
parabola (gravitational acceleration: g = 9.8 m/s2)

The trajectory of the object is projected to the virtual image planes of each camera. A 3D 
position is estimated with the proposed method described in Section 2 using the point 
projected on the virtual image plane (u, v) of each camera. 

3.2 Simulation results 

Table 1 lists the averages for estimation error in the simulation experiments, and Fig. 7 has 
examples of the recovery of spiral and non-uniform motion using three cameras. The 
“constant” in Table 1 means the time delay of the shutter timing is the same (δ = 1/60 s 
when there are two cameras, and 1/90 sec when there are three), and “random” in Table 1 
means the time delays at every frame are not the same (0 < δ < 1/30 s). The “stereo 
(asynchronous)” shows the results for general stereo vision with time delay. It is clear that 
the proposed method provides more accurate estimates than stereo vision. This is because it 
can estimate the 3D position using the pseudo-corresponding points at the same time. Using 
three cameras provides more accurate results than using two cameras. This is why time 
delay δ is short, and the accuracy of a linear prediction is improved. 

Motion Camera Proposed method Stereo(asynchronous)
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Constant Random Constant Random 

2 0.86 2.89 13.68 13.68 
Spiral

3 0.32 2.17 12.54 13.72 

2 2.30 3.61 11.07 11.92 
Non-uniform 

3 1.23 2.51 9.87 12.54 

Table 1. Average of absolute errors in 3D positions [mm] 

Figure 7. Example of recovery of 3D position 

4 Experiments using real cameras 

4.1 Configuration of vision system 

Figure 8 shows how we placed the three cameras in our vision system. They were mounted 
at a height of 2,800 mm, and each viewed an area of 2,000 x 3,000 mm. Each was calibrated 
using corresponding points of world coordinates (xw, yw, zw) and image coordinate (u, v)
based on Tsai’s camera model (Tsai, 1987). The shutter timing for all three cameras was 
controlled by a TV-signal generator. Three frame grabbers for the three cameras were 
installed on a PC. Our hardware specifications were: 
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<Hardware Specifications> 
- PC (DELL PRECISION 530) 

CPU (XEON DUAL PROCESSOR 2.2 GHz) 
MEMORY (1.0 GB) 

- CAMERA (SONY XC-003) x 3 
- FRAME GRABBER (ViewCast Osprey-100) x 3 
- TV SIGNAL GENERATOR (TG700 + BG7) 

Process-1, process-2, and process-3 in Fig. 8 analyze images from camera A, camera B, and 
camera C every 1/30 s. Analyzed results such as object position in image coordinate (ut, vt)
and the instant at which the analyzed image is captured are sent via the UDP interface to 
process-4, which outputs the 3D positions of the object using the procedure described in 
Section 2. There is negligible delay due to communications between processes because this 
work is done on the same computer. 

Figure 8. Overview of our vision system 

4.2 Recovery of uniform circular motion 

We used a turntable and a ball, as shown in Fig. 9, to evaluate the accuracy of the estimated 
3D positions. A ball attached to the edge of a ruler (1,000 mm in length) makes a uniform 
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circular motion with a radius of 500 mm. The turntable is placed on a box at a height of 500 
mm, and the ball is 660 mm above the floor. The turntable rotates at a speed of 45 rpm, and 
its rotation speed per second is (45x2)/60 = 0.478 radian. 
Table 2 lists the averages for estimation error. The pixel resolution at the floor is 4 mm. The 
average of the positions using stereo vision with synchronous cameras was measured 
within 4 mm; this error is an appropriately result from the viewpoint of resolution. It is clear 
that our method is better than the stereo vision with asynchronous shutter timing. However, 
the error with our method is approximately 6 mm larger than with stereo vision with 
synchronous shutter timing. This is because the pseudo-corresponding points have the 
error. However, it is possible to reject 3D positions using angle θ, which was described in 
Section 2.3. 

Stereo
Proposed method 

Synchronous Asynchronous 

9.2 3.7 266.0 

Table 2. Average and variance in estimation error [mm] 

Figure 9. Captured images of turntable and ball 
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Figure 10. Recovery of bounding motion 

4.3 Recovery of bounding ball 

We performed an experiment to recover a bounding object to evaluate the proposed method 
since the recovery of uniform circular motion was at a constant speed. Figure 10 has an 
example of the motion of a hand-thrown ball bounced for about 1.5 s. We can see 135 plotted 
points. This indicates that the speed is the same as a 90 fps camera. Therefore, the proposed 
method can obtain the 3D position at 90 fps, when we use three normal cameras (30 fps) 
when the time delay of each shutter timing is 1/90 s. 

5. Processing time 

Our vision system was implemented on a PC with dual Xeon processors 2.2 GHz dual Xeon 
processors. It took 2.7 ms for the vision process to calculate the positions of colored objects 
from an image, and 1.8 ms for the transmission process via UDP with one PC in our 
implementation. Therefore, this system can determine the 3D positions of an object in 4.5 ms 
from the time the analyzed image was captured. It is possible to use n cameras with our 
system when the time delay from each of them is δ, if δ > n x (processing time) is satisfied.

6. Discussion and Conclusion 

We proposed a method of pseudo-stereo vision method using cameras with different shutter 
timings, where the previous two frames were calculated using a spline curve. The method 
can output a 3D position at 90 fps using three cameras, and using multiple cameras is 
expected to enhance the output of the 3D positions. 
We confirmed that our method was better than stereo vision with the time delay in 
simulation experiments. The error was 9.2 mm in experiments using real cameras. However, 
the error was within a useful range, because the object’s radius was 20 mm.  Moreover, it is 
clear that our method is better than the stereo vision with asynchronous shutter timing. 
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1. Introduction 

Real-time environment capture systems provide autonomous robotic machines and vehicles 
with vital information for interacting with their environments. Navigation and obstacle 
detection are key features of these systems. The systems are designed to capture objects, and 
establish their locations and approximate dimensions. These system capabilities are 
described in detail in this chapter. The ability to identify objects to facilitate manipulation or 
interaction is not the primary subject of investigation. 
Environment capture systems can be designed with a number of sensors. However, 
information provided by many sensors is very limited. Very large amounts of information 
can be obtained with systems comprising cameras and a few sensors, as camera images can 
be processed in a great variety of ways. These systems have some issues, namely  very 
complex algorithms, high memory requirements for images, and limited real-time 
capabilities. However, rapid advances in micro-electronics are quickly addressing these 
issues. 
In this chapter, we show how measurement methods based on stereophotogrammetry can 
be adapted and optimized for embedded systems. We will also deal in detail with key 
challenges and issues encountered in designing the systems. We provide experimental 
results for a number of typical applications. 

2. 3-D Environment Capture Procedures 

There is a host of sensor systems available that are suited for environment capture. They can 
be combined to compensate for different subsystem deficiencies and weaknesses. By 
combining a number of sensors, extensive information can be obtained from the 
surroundings. 
Among the many environment capture systems available for vehicles are: 
• radar systems 
• ultrasonic devices 
• laser systems 
• active and passive optical measurement methods 
Some measurement systems are based on the principle of the active propagation delay of an 
emitted signal. Ultrasonic sensors are suitable for short distance targets. These systems are 
useful indoors for measurement ranges of a few meters. Distances to objects can be 
measured very accurately (see Uhler et al., 2003). Ultrasound measurements taken outdoors 
can be disturbed by bad weather conditions  with the result that the detection range is 
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restricted and the reliability is impaired. Due to the narrow aperture angles many sensors 
are needed for fully comprehensive environment capture.  
Radar sensors are deployed for objects at close range (24 GHz), and for objects at long 
distances (76 GHz). The aperture angle is very small. The surroundings can only be 
completely scanned and surveyed by panning the radar antenna (as in aeronautics), or by 
deploying a bank of radar sensors. Devices for ground-based vehicles are offered at this 
time for distances to objects ranging from a few meters to many hundred meters. However, 
these systems interfere with other equipment and pose a risk to living organisms. They are 
also expensive (Venhovens & Naab, 2000). 
More recently, laser scanners are being adopted for use in environment capture systems. 
They also work on the propagation delay principle and scan and range a 3-d point at a 
particular point in time. These systems are quite accurate. For complete environment 
capture, a mechanically moveable deflection mirror is needed (Fuerstenberg et al., 2003). 
Distances to objects are of the order of a few meters and go up to some hundred meters. 
Object distances are limited in outdoor public areas by laser radiation and the risk of serious 
damage to biological eyes.  
Active optical propagation delay techniques (Lange & Seitz, 2001; Tyrrel, 2004) have been 
under investigation for some years now. These techniques produce an extensive depth 
image with a single sensor. The Photonic Mixer Device (PMD) is one such system. In this 
system, a modulated optical signal is transmitted to a scene and reflections from the scene 
are captured by the elements of a matrix (preferably a CMOS sensor). This is similar to the 
way ultrasonic sensors work. The advantage of this system is that only one camera is 
needed. Quite dense disparity maps are generated, and they can be processed in real-time. 
One drawback with this technique is the high processing power needed. The maximum 
object distance is a function of the wavelength of the modulated signal, the optical transmit 
capacity brought to bear on the scene, and sensor characteristics. This method of 
measurement is a very recent innovation and has a lot of potential.  
Images are processed directly in many optical systems. The texture of the object is overlaid 
with additional information in active imaging systems. Distance and surface information 
can be determined to a high degree of accuracy with the help of fringe projection.  
Accuracies on the order of μm can be achieved for limited observation spaces with active 
systems comprising a number of cameras. Numerous applications for these techniques can 
be found in the fields of automation, quality assurance, medical systems, and, to a lesser 
extent, security systems. They are not widely deployed for environment capture. 
When a number of active systems are deployed together there is always a risk that they will 
interfere with each other. Systems with large aperture angles, or systems designed to range 
over great distances, sometimes emit very powerful light. This restricts their use. 
3-d data can also be acquired with the help of passive optical systems in systems comprising 
more than one camera. The simplest case of multi-camera systems, i.e. 
stereophotogrammetry, comprises two cameras. This dual-camera constellation generates 
depth images. 
Environment capture systems do not need to be very accurate. However, a large observation 
space has to be scanned and surveyed rapidly. Passive systems, such as 
stereophotogrammetric measuring systems, are suited for these types of applications 
(Knoeppel et al., 2000). The images provide information on the entire scene being scanned. 
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The camera system is the key to adapting a stereophotogrammetric system for different 
applications. The arrangement of the cameras, the base, aperture angle, and the resolution of 
the cameras determine the measurement range. The normal case of stereophotogrammetry, 
whereby the cameras are arranged parallel to each other, is suited for environment capture 
over large distances.  
In the next section we describe what we consider to be the key algorithms and parameters 
needed for a compact 3-d environment capture solution based on a stereo camera system.  

3. Function and Setup of Stereo Camera Systems for Generating 3-D Depth 
Information

The coordinates of a point in 3-d space are determined using a stereo camera system by 
mapping the object point in two camera images taken from different angles. When a point 
has been detected in both camera images, the 3-d coordinates of the point are calculated 
using basic geometrical functions. 

reference block

search area

best fitting
search block 

x

y

left image

right image

P1

P2

Figure 1. Basic principles of block matching 

Typically, a 3-d stereo camera system consists of two calibrated cameras connected together 
rigidly, whereby the clearance between them is the base. 
The detection of the object point in the two images (generally known as the correspondence 
search) is typically nontrivial. There are a number of detection solutions available.  
One option is to attach suitable indicator marks to the target. These marks are detected in 
the image by segmenting and measuring punctiform patterns. It is normally impossible or 
impracticable to attach separate markers to targets in the applications at hand. Typically one 
has to use the object texture instead. 
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In correspondence analysis, a section of the first image (reference block, position P1 in fig. 1) 
and a block of the same size (search block, position P2 in fig. 1) in the second image are 
isolated. The similarity between these two blocks is then calculated (see fig. 1). Due to the 
geometry of the shot (the two projection centers and the object point form a plane that can 
be intersected by the image plane – also known as the epipolar line), the corresponding 
point can only be located on a specific line in the search image. The similarity for every 
point along this line is then determined (see fig. 2). The location of the extremum (= offset u
of the features with respect to each other) is the position of the corresponding point.  

5 10 15 20 25 30 35 40 45

0

0.5

1

max. Similarity

Figure 2. A typical correlation function (NCCF) 

Standard correlation functions such as the Sum of Absolute Differences (SAD; eq. 1) or the 
Normalized Cross Correlation Function (NCCF; eq. 2) can be invoked to calculate the 
similarity. The quality of the results provided by these two functions differs; the numerical 
overheads also differ. The SAD is calculated for each pixel in the search window by 
computing the correlation value using 
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),( ijF  - pixel in the search block 

),( ijP  - pixel in reference block

 M, n - window size 

ξ,η - displacement in x, y- direction 

F and P represent nm ×  large image cut-outs from the reference and search images. The 
SAD function is very sensitive to brightness variations and does not always give useful 
results. The NCCF function produces better results but they are numerically more complex 
to compute : 
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),( ijF  - zero-mean pixel in search block 

),( ijP  - zero-mean pixel in reference block

It is difficult to analyze the correspondence for objects such as white walls with little or no 
texture of their own. In these cases a preliminary search should be made for edges or image 
sections that have sufficient texture. The correspondence search should only be made at 
these locations. Other areas are removed or interpolated. This can also be beneficial, because 
it thins out the 3-d point cloud. 
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Figure 3. Elements of a camera orientation 

When the object point has been detected in both images, the 3-d coordinates of the point are 
calculated using the collinearity equations (Schenk, 1999) (see also fig. 3): 
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The coordinates 'x  and 'y  are the image coordinates, and YX , and Z are the object 
coordinates of the observed point (see fig. 3). The other elements in the equation define the 
internal and external orientation of the camera. The constant kc is the calibrated focal length, 
and '0x  and '0y the principal point. This point is defined as the point of intersection of the 
optical axis and the image plane. Terms for the radial and tangential distortion are examples 
of other elements in the internal orientation. The six elements in the external orientation 
describe the location of the camera ( ),, 000 ZYX  and its viewing angle ( xxa  are the elements 
of the rotation matrix). Camera calibration is complete once these values have been 
determined. 
Typically, the calibration data is produced using a bundle block adjustment. A calibration 
plate with known points is required for this procedure. The nine unknown parameters for 
eq. 3 and eq. 4 are then determined by adjusting the intermediate observations. The 
relationship between observations (image coordinates) and unknowns (calibration) is 
nonlinear. Approximate values need to be assigned to the unknowns. This is often a very 
difficult and time-consuming exercise! Once the calibration data are known, the mapped 
object point can be calculated from the image coordinates by re-arranging eq. 3 and eq. 4.  
The normal case of stereophotogrammetry is a special case of a stereo system. The cameras 
are arranged so that both image planes are in the same plane, and the camera axes run 
parallel to one another. Determining the object coordinates is then simplified to a beam 
intersection problem and is thus more straightforward than the general case. The formulas 
for calculating the 3-d coordinates then become: 

u
BcZ

u
ByY

u
BxX k ⋅=⋅=⋅= ;';'  (5) 

The base (i.e. the clearance between the two cameras) is represented by B . The disparity u
is the offset of the same object point in the two camera image planes (fig. 1). The image 
coordinates of the point in the reference image are 'x and 'y .
Another advantage of the normal case is the simplified correspondence analysis. This can be 
restricted to the pixel line in the search image, without having to calculate the epipolar line 
separately (see also fig.1). The systematic errors in the camera system can be compensated 
by using the standard camera model (eq. 3 and eq. 4). The corrections ZΔ  and XΔ  can be 
calculated with ZΔ = fZeZd +⋅+⋅ 2  and XΔ = iXhZg +⋅+⋅  ( ℜ∈id ,..., ).
Combining Z and X with eq. 1 yields  
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Coefficients k, l and m only have to be acquired for eq. 6 during calibration. There is no need 
to determine base and focal length. The derivations for X and Y are similar (see Albertz & 
Kreiling, 1989). 
Rectification has to be performed in order to apply the algorithms from the normal case of 
stereophotogrammetry to a general camera set-up. The original images taken by the camera 
in the general camera set-up are transformed so that they are the same as an image in the 
normal stereo case. A virtual image plane, in the same location as the normal case, is 
calculated. The original images are then converted to this plane. We can derive the 
transformation from the calibration parameters. The conversion can be carried out on 
special image processing hardware during imaging. 
The accuracy of a stereo camera system is a function of the geometry of the imaging 
configuration and the image processing accuracy. System accuracy can often be estimated 
successfully by applying the laws of error propagation to the formulas for the normal case 
(eq. 5). The mean error Zσ in the typically predominant Z direction then becomes 

uz Bc
Z σσ
⋅

=
2

 (7) 

Better accuracies are achieved the shorter the distance to the object, the larger the camera 
constant, the wider the camera base, and the more accurate the image coordinate 
calculations are.  
The resolution of the cameras yields a quasi quantization of the measurable distance. The 
disparity is less than a pixel width at a distance to the object that is greater than a specific 
threshold. The resolution can also be improved with a subpixel interpolation function. The 
optics  and thus system accuracy  are also affected by air. Camera aperture angles 
determine the system viewing range. However, large aperture angles give rise to distortions, 
that have to be corrected by non-linear correction terms in eq. 3 and 4 (El-Melegy & Farag, 
2003). This is always necessary with precision measurements. 
The above image processing algorithms have to be implemented and evaluated. The various 
implementations are described in the next section. 

4. Designing an Embedded Stereo System  

4.1 Hardware Architectures for Information Processing  

Image processing algorithms may be implemented on standard PCs or PC clusters. This 
option is very common due to the good availability of state-of-the-art high performance 
PCs. These computer systems can be deployed universally in a range of applications due to 
their considerable computing power.  
They are not so useful in mobile applications because of the low space and performance 
requirements of these applications. Specially developed embedded systems are favored in 
these situations. The embedded hardware is often only suited for specific applications. 
Often, PCs or embedded processors are not powerful enough for real-time image processing 
due to their architecture and bus systems. A number of processor elements, connected in 
parallel or in a pipeline is a more suitable arrangement. Processor elements can be complete 
processors or special hardware elements. Options for different hardware structures are 
shown in fig. 4. 
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Figure 4. Processing principles a) Serial    b) Parallel  c) Pipeline 

A single processor system is shown in fig 4 a). The algorithms are processed chronologically 
and in series by a single processor. This processing model is called Computing in Time. The 
data throughput per unit time is increased in comparison to fig. 4 a) by the parallel 
processing in fig. 4 b) and c). The processing elements may be fully fledged processors, or 
specially developed hardware. FPGAs are available for hardware development in low-
volume production. FPGAs are programmable logic chips. They may also be described as 
special processors, where a program may be implemented and executed in hardware. 
A number of processing operations may be executed simultaneously in a single processing 
step in the hardware logic. The algorithm is data-flow oriented, i.e. it is continuously 
compiled and executed as a single instruction in structured logic. This programming model 
is distributed spatially and is known as Computing in Space (fig. 4 b) and 4 c)).  
Data-flow oriented algorithms are best implemented in hardware, whereas control-flow 
oriented algorithms run better on a single processor or processor system. Data-flow oriented 
algorithms can process high data rates. They consist of basic operations and there are few 
logic branches in the data flow. On the other hand, control-flow oriented algorithms can 
process small quantities of data only, but with a very complex data flow.  
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4.2 Data Flow in the Image Processing System  

The standard data flow model of an image processing algorithm (Noelle, 1996) is shown in 
fig. 5. There is a tendency to use data-flow oriented algorithms for preprocessing, and 
control-flow oriented algorithms for feature extraction, and interpretation & classification.  

Camera Preprocessing Feature
extraction

Interpretation
&

classification

Low-Level
(Pixel)

Medium-Level
(Icons)

High-Level
(Scenes)

Local
filtering

Edge
detection

Global filtering
and

transformation

Creation of
Relations

High Data rates
Simple Structures

High Computation
Power

Simple Algorithms

Low Data rates
Complex Structures

Medium Computation
Power

Complex Algorithms

Figure 5. Data flow model of image processing algorithms (Noelle, 1996) 

Preprocessing is often implemented in hardware logic. Interpretation & classification is 
typically run on processors as shown in fig. 5. This system of hardware logic and processors 
is also referred to as hardware-software co-design (Gupta & Rajesh, 1995). The developer 
decides which algorithms to implement in hardware and which in software, or the structure 
of the hardware-software co-design is automatically selected by a separate algorithm.  
A typical image processing algorithm implemented as a hardware-software co-design for a 
stereo system is shown in fig. 6 (Kaszubiak et al., 2005). The preprocessing stage comprising 
the correlation and edge detection functions, and the subpixel interpolation function are 
implemented in hardware. The implementation on a single processor is not efficient enough, 
due to the architecture of the data bus systems which cause bottlenecks when images are 
read in real time. Knoeppel (Knoeppel et al., 2000) presented this type of system. 
Implementation in hardware requires that a data-flow oriented solution is developed for 
real-time data processing. 
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The object detection step using a depth histogram (see section 4.4) can also be viewed as a 
data-flow oriented algorithm. It is therefore also implemented in the FPGA hardware. The 
downstream stages in the processing chain are implemented as a pipeline on three 
processors, because of the many control-flow oriented structures. 
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Figure 6. Algorithm as a hardware-software co-design 

We can achieve real-time processing conditions for a stereo image processing system as 
shown in fig. 6 with a 1024x500 pixel resolution and a 25 Hz image rate by implementing the 
hardware-software co-design in an embedded system. We will now describe how the 
different parts of the algorithm are adapted and implemented as an embedded system as 
shown in fig. 6. 
To detect objects with the very limited resources of an embedded system, a data reduction 
stage with a straightforward algorithm is needed. The first step is to acquire the 3-d 
points/disparity map with the help of stereo image analysis. We will discuss the 
implementation of these algorithms in hardware in the next section. 

4.3 Optimizing and Implementing the Algorithms for Generating the 3-D Disparity Map 
in Hardware  

4.3.1 Steps for Reducing Computation Costs  

The input data for generating the 3-d disparity map is a sequence of stereo images 
containing a lot of information that is not vital for the application.  
The strategy for system optimization and thus the reduction in computation costs for 
determining the disparity map consists of the application of a suitable similarity criterion, 
the pre-selection of relevant image sections, data organization and flow, and improving the  
input data. 
When the lighting conditions are good, simple similarity criteria are used. The simple 
structure of the SAD function (eq. 1) and its simple mathematical elements make it the 
function of choice for many applications. It is also processed at a higher speed than the 
NCCF (eq. 2). However, since the SAD is not very reliable, a preprocessing step or extra 
criteria are needed for reliable results. The benefits of speed in some applications 
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compensates for some of the disadvantages of the SAD function. Nevertheless, the NCCF 
has proven itself to be a reliable criterion for many cases of environment capture.  
By rectifying the images, image data processing could be simplified, but the rectification 
task has the disadvantage of high computation costs. To save computation costs we can 
avoid fully rectifying the images to produce the epipolar condition by applying correction 
equations (eq. 6) as described in section 3, especially if we can align the cameras accurately. 
The objects being captured are mainly other vehicles, houses, bridges, and people; and they 
all have long vertical edges, which allows a number of lines to be averaged in the vertical 
direction  thus keeping system calibration work to a minimum. A slight rotation of the 
camera can be compensated for by averaging 2-4 lines and combining them to a single new 
line.
We can perform the correction step and the step for calculating the 3-d coordinates in 
different parts of the system. We can optimize the computation costs by determining the 3-d 
coordinates for the center point of scanned objects only. In order to reduce computational 
overheads the correction step is run for the necessary points only. 
The computation power needed to fully compute all blocks in a line is very high. This is, 
however, necessary for continuous image processing over a longer period.  
Environment capture systems can be divided into two major groups according to their 
detection ranges: 
• imaging systems with a wide aperture angle for objects at close range 
• systems with a narrow aperture angle for objects at greater distances (as needed for a 

lane change assistant (see section 5.2)) 
We have developed an optimized algorithm for this latter case.  

4.3.2 Hierarchical Search Algorithm 

We used the error characteristic (eq. 7) in determining the location over the detection range 
in this algorithm. It is desirable to have a constant relative error over the entire detection 
range in many environment capture applications. We optimize the area correlation 
algorithm by means of an image pyramid (Tornow et al. 2003) for implementation in 
hardware. We make use of the fact that the maximum camera resolution is only needed at 
the greatest object distance, whereas the available resolution at close range is more a 
hindrance than a benefit due to the large disparity. 
We reduce computation costs by producing image layers with different resolutions. The 
layers in the pyramids are ranked by factor 2 (see fig. 7). We have to adapt the accuracy for 
locating distant objects, as the error in determining the distance is a function of the square of 
the distance. This means that there is considerable redundancy available for the 
measurement accuracy for objects at close range. We generate each layer by replacing two 
pixels by their mean value. L0 is the image taken with the original resolution. The individual 
layers are arranged so that the correlation method described in section 3 can be applied in 
all resolution layers in the same manner. 
We can thus achieve a large detection range with an approximately constant relative error 
using a very small search block in each layer. Only one specific distance range is represented 
by each layer in the pyramid. We can cover the entire detection range by summarizing the 
data from all layers, as shown in fig. 8.  
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Calculating the root of NCCF (eq. 2) poses problems in the hardware implementation. The 
squared NCCF can be used as an alternative, as only the position of the extremum is 
relevant. All negative values are set to zero.  
We now establish the locations of the maxima above a predefined threshold in the resulting 
search block. Only maxima corresponding with object features (object edges) are processed. 
The disparity with the greatest weighted correlation value is then selected for the reference 
block from all layers (see below). Disparities from layers with reduced resolution have to be 
recalculated to the original resolution. 
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Figure 8. Distribution of the entire range for the application in section 5.2 

Having created a disparity map for each layer, we append this information to the resulting 
disparity map. We now select the significant layer for each 16-pixel block in the original 
resolution. We search for the extremum of the correlation values in the stacked blocks (fig. 9) 
in the layers.  
Objects that are very close only produce a response that is above the threshold in the layer 
with the lowest resolution. The further away the objects are, the more layers respond. 
Different layer resolutions generate results with different accuracies. We have to introduce a 
penalty to ensure the best result is always selected. Thus, the higher resolution layer always 
wins.
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Disparities ulayer and x-coordinates xlayer in the disparity map are only valid for the layer they 
were calculated in. Disparities u and coordinates x’ in the original resolution in the stereo 
images are needed for calculating the object coordinates from the disparity and the image 
coordinates with eq. 5. They can be calculated with eq. 9 and eq. 10. The index or the 
exponent layer is the associated number. The value s, the difference between the center 
points of two neighboring reference blocks, and νlayer, the position-related number of the 
reference block in the layer, are needed to calculate xlayer. The following relationship applies: 

sx layerlayer ⋅=ν  (8) 

The window size for the reference and search blocks is defined in section 3 by m x n. Thus 
the middle of the reference block is represented by m/2. Thus 

layer
layer

mxx 2)
2

(' ⋅+=  (9) 

and

layer
layer uuu 2)( min ⋅+=  (10) 

umin is an offset in eq. 10 and it represents the minimum disparity. All values except νlayer are 
measured in pixels.  
The maximum effect of implementing this procedure in hardware is achieved when the size 
of the reference block m is equal to the search block.  In this case the costly methods for 
loading the output data for the correspondence analysis are no longer needed, and the 
maximum clock rate can be lowered significantly. This yields 16 correlation results for the 
16x1 pixel block size in our application. We were able to remove disparities smaller than 8 
pixels in all layers to reduce the data further, as we are only dealing with objects at distances 
up to 150 m. 
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The disparity is then calculated to subpixel accuracy by means of quadratic interpolation 
(Tornow et al., 2006). We then determine the 3-d coordinates using eq. 5 and add them to the 
resulting disparity map. 
If a standard area correlation based on the epipolar geometry up to a maximum disparity of 
256 pixels is executed, then the processed data volume and thus the necessary clock rate are 
increased sixteen times due to the great number of block combinations. By running the 
hierarchical algorithm with 5 layers and meeting the same requirements the data volume is 
only doubled. Thus, the correlator only runs at double the pixel clock for continuous real-
time processing. This optimization means that a 3-d disparity map (fig. 10.) is calculated 
quasi simultaneously with the image acquisition from the stereo image pairs.  
We must now extract the necessary information from the disparity map. The information we 
need to take from the disparity map differs from application to application. We discuss 
some typical applications in section 5. 

4.4 High-Level Processing  

4.4.1 Object Detection 

Objects with closed contours are detected and an attempt is made to classify them.  
We search for points belonging to an object and assign them to an object cluster. We will 
briefly explain selected clustering algorithms and present a typical application. 3-d points 
can be clustered in accordance with their spatial relationships (segmenting algorithm). We 
can also represent in a histogram the relationship between the points in the disparity map 
(condensation algorithm). There is another algorithm that finds the collinear points (Hough 
transform) belonging to an object (see section 4.4.3). 
Segmenting algorithm (Knoeppel et al., 2000): There is a nonlinear relationship between the 
disparity map coordinates x’,y’ and u, and the real coordinates X,Y,Z according to eq. 5. All 
image coordinates have to be converted to real coordinates for the geometrical algorithm. 
The different 3-d points can then be correlated spatially with one another, thus locating 3-d 
points that are spatially related. Many different criteria may apply, namely target shape 
(triangle, square, circle) or distance to an object. Features are detected using a feature space, 
where the features are entered for every point. 3-d points are clustered in the feature space. 
These points can be assigned to a specific object. Very good a-priori knowledge is often 
needed to segment objects. It can be a very difficult task to span a unique feature space. The 
segmenting algorithms are therefore only suited for a small number of different objects that 
can be uniquely identified, such as traffic signs (Fang et al., 2003). 
Condensation algorithm (Dellaert et al., 1999): The condensation algorithm may be better 
suited than the segmenting algorithm for detecting raised objects or edges. This is the case 
when objects and edges that are fixed on a plane have to be located (see also 4.1.1. 4.1.2). 
However, one cannot differentiate between the objects of a given category. The vehicle 
category can be detected very well on a road with this algorithm. The different car models 
cannot be separated into subcategories with the condensation algorithm, as too few features 
are processed. This algorithm is based on a histogram that allows the vertical edges for the 
objects contained in the image to be located, as the 3-d points on an edge are located at the 
same distance away.  
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Figure 10.  Condensation algorithm a) Depth map b) Potential view along the column  

A detected 3-d point produces a potential on the plane. If another 3-d point is found at the 
same distance (vertical edge), the potential increases accordingly. Fig. 10 a) shows a 
disparity map, and fig. 10 b) a section view of the generated histogram along the columns in 
fig. 10 a).  
A raised object is detected when the potential reaches a predefined threshold. The potential 
only indicates the height and location of a detected object, but gives no detailed information 
on its shape. The advantage of the condensation algorithm is the rapid speed at which it 
processes the 3-d points (it uses only the distance and potential of a specific position to 
process the scene).  
We will describe a typical condensation algorithm and discuss its benefits and advantages in 
an embedded system. Approaching objects are detected on a plane and their speed is 
determined. The camera system itself is also moving. Examples of this type of application 
are vehicle detection (Kaszubiak et. al., 2005) and the detection of pedestrians (Gavrila, 
2004). Complex search operations are executed by the clustering and tracking algorithms 
making them control-flow oriented algorithms. They run on processors.  
The condensation algorithm is deployed as a clustering algorithm to detect raised objects on 
a plane. Raised objects on this plane are not only approaching objects, but can also be objects 
that are not moving or objects that are moving in the opposite direction. These objects are 
filtered out with the help of two histograms (fig. 11).  
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Figure 11.  a) Depth histogram   b) Time histogram 

The depth histogram is generated from the disparity map. 3-d points at the same distance 
and lateral position (vertical edge) are accumulated. The non-linear relationship from eq. 5 is 
not invoked for generating the depth histogram, as we are dealing with vertical edges only. 
This means that we can generate the depth histogram solely with the image coordinates 
(x’,y’,u). Thus we can avoid using a large number of calculations to generate the 3-d points. 
The variables x’ and u serve also as addresses for a memory cell in the histogram. The 
memory cell is an accumulator that totals the number of accesses to this memory cell per 
image. Fig. 11 a) shows the depth histogram for the disparity map in fig. 10 a). One depth 
histogram is generated per image. Raised objects in the depth histogram are found with a 
threshold.
The time histogram (fig. 11 b) is structurally the same as the depth histogram. Vertical edges 
found in the depth histogram are tracked in the time histogram. The current depth 
histogram is compared with the time histogram. A search is made in the time histogram for 
a maximum at the location of a maximum in the depth histogram, or in a search area in the 
vicinity of this location in the previous image.  
The accumulator entry at this position indicates the age of the edge. If an edge is found in 
the search block, the accumulator entry is set at the location of the point in the current depth 
histogram and incremented. Raised objects only are detected with this search box if they are 
objects that are located at the same distance from the observer’s vehicle in a number of 
images, or if they are objects that are approaching the observer’s vehicle. If the point in the 
previous image belonged to a cluster, the number of this cluster is also stored in the new 
image. The age of entries in the time histogram that have no corresponding maxima in the 
current depth histogram is decremented. Thus previously detected objects can disappear 
from the time histogram. 
Clustering is based on the time histogram. Values in the time histogram that are greater than 
a specific threshold are assigned to different object clusters. The closer the objects are to the 
cameras, the larger they appear in the image sensor. This means that distances between left 
and right vehicle edges increase in the image.  
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Figure 12. Mapped width of an object in the histogram as a function of the distance 

We distribute the depths in a hierarchy and generate the layers as described in section 4.3.2. 
This allows us to keep the clearances between object edges within an almost constant range. 
Fig. 12 shows the range for a 1.80 m wide object in the histogram. We can see from the figure 
that the lateral spread of the object over the entire depth is effectively constant. By reducing 
the resolution we keep object edges very close together so they can be detected easily. 
We do not need to calculate the 3-d edge coordinates because we cluster the objects in the 
histogram. We calculate one 3-d edge only for every detected and clustered object. This 3-d 
edge is the center point of the object cluster. Thus we reduce considerably the number of 
calculations needed. This straightforward clustering technique, based on the hierarchical 
depth map, also reduces the number of computations. This type of algorithm is very suitable 
for implementation in an embedded system. 

4.4.2 Tracking 

Disturbances during image acquisition and quantization of the hierarchical depth (section 
4.3.2) cause jumps in the distance measurements. These jumps have to be smoothed in order 
to determine object speeds. A Kalman filter is used to smooth the jumps (S. Lee & Y. Kay, 
1990). The Kalman filter is an ideal, recursive data processing algorithm that allows us to 
determine object speeds without delay and after an initial settling period. Let us consider an 
object at a distance of 150m behind the camera system as an example. We wish to detect this 
object and track it to a distance of 10m. The object is traveling at a uniform speed of 45km/h. 
It accelerates to 65km/h at a distance of 100m. The Kalman filter algorithm smoothes and 
estimates the speed as shown in fig. 13. Distance and speed are plotted as negative values, 
as the object moves toward the camera system from behind.  
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Figure 13. Speed and distance estimation with the Kalman filter 

4.4.3 Detecting Boundaries 

We often need to detect the boundaries of the planes on which the objects move. We tackle 
this task using the Hough transform (Kluge & Lakshmanan, 1995). It enables us to find 
straight lines located at different angles in the image, e.g. plane boundaries. Among the 
items we are looking for are lane markings, skirting boards, markings on playing fields, and 
the like.
The Hough transform typically executes in the camera image. However, in some 
applications it can be run inside the disparity map, the depth histogram or the 3-d space. A 
basic element of the Hough transform is the description of a straight line in the Hessian 
normal form (eq. 11)  

ϕϕ sincos ⋅+⋅= YXr   (11) 

A line bundle is placed on the point (fig. 14). A radius r and an angle ϕ are associated with 
each line. The (r,ϕ)-coordinates points to the accumulator cells in a (r,ϕ) histogram. All 
points on the same line in the (X,Y) space have one line in their line bundle with the same 
(r,ϕ) coordinates. These lines are then accumulated in the (r,ϕ) space and a histogram is 
generated (this procedure is the same as for the condensation algorithm). High histogram 
entries indicate a line at this location in the image. We can search for the associated points 
along these lines by executing an inverse transformation in the (X,Y) space. 
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Figure 14. Hough transform a) Line bundle in the X, Y system b) Line bundle in the r,ϕ
system 

Again here we can reduce the computation overhead by running the Hough transform in 
the depth histogram. We only need to generate the line bundle in a specific area because 
lines that are parallel with the line of viewing only appear in the image.  
For example, we could then restrict the angles of the generated line bundle to a 0° to 50° 
range for lines to the left of the camera system and to a 310° to 360° range for lines to the 
right of the camera system. This would produce the histogram in the Hough space as shown 
in fig. 15. 

Figure 15. Accumulator in the Hough space 

The algorithms outlined above are all suited for numerous applications in robotics, 
autonomous vehicles, and in road traffic situations. We now present a number of examples. 

5. Typical Applications  

5.1 Stereo Applications in Road Traffic  

Stereo-image analysis is deployed on roads for a variety of purposes. The algorithms 
encountered here can be divided into two main categories: 
• feature-based algorithms (direct triangulation of special features) 
• correlation algorithms for determining corresponding points in the images 
Combinations of these two categories also exist. There is a wide spectrum of different 
quality criteria, that differ greatly in computational costs and sensitivity to image 
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information (see also section 3). Recent research in graph theory is producing very 
promising techniques for highly structured scenes. The optical flow is also applied in some 
cases. Great care needs to be taken in selecting the right methods. Many examples are to be 
found in the literature. 
[Saneyoshi, 1996] detects vehicles with a stereo camera system using a SAD criterion 
implemented in hardware. The maximum object distance is very restricted due to the low 
camera resolution. The system does not run in real time despite fast processing speeds. Lane 
and road intersection detection at close range in software is presented. 
A stereo system is described for detection and tracking in urban traffic in [Franke et 
al., 1997]. He deploys detected information on the surroundings for route planning for 
autonomous vehicles. Franke detects small features (that are restricted to corners and edges) 
in the image for the correspondence search. Each feature is marked with a typical code word 
that indicates, for example, whether a feature is a bottom left corner or top right corner etc. 
Code words only are compared to save CPU time during the correspondence search. 
[Stiller et al., 1998] introduces special correspondence hypotheses to improve the recognition 
capability of vehicles in real road traffic situations. A number of quality scores and road 
parameters are assigned to each correspondence hypothesis. 
[Yoshika et al., 1999] deploys a low resolution stereo camera module (16x46 pixels) for 
detecting vehicles in the blind spot area. The system has special hardware for the 
correspondence search. The stereo module produces a 3-d point for every pixel. No details 
are given as to how the correspondences are determined. 
Subaru has offered a stereo-camera-based Adaptive Cruise Control (ACC) system since 
2000. A 4x4 correlation is calculated in a special hardware. The size of the control unit is 
35x20 cm without cameras. The camera is a 640x256 pixel CCD camera. The cycle time is 
100ms.
The Acadia vision processor from a company called Sarnoff is another solution. It has a 
special integral stereo unit on chip. The system is available as a PC development 
environment. Camera integration is not part of the offering.  
The company called 3-d-IP (www.3d-ip.com) offers an FPGA implementation of a stereo 
image analysis based on artificial neural networks along with a stereo head.  
The Point Grey Research company has very recently launched the Bumblebee system with 
continuous hardware-supported stereo image analysis on the market. The system consists of 
a very compact module with an integral camera system with a fixed base. The CCD camera 
resolution is low. The system is very suited for close-range work indoors. However, it is 
only of limited use outdoors due to the integrated CCD cameras. 
We will now present the experimental results of our investigations, based on our brief 
summary of global state-of-the-art technology, and the description of our own in-house 
design and development work in sections two to four.  

5.2 Experimental Results for Embedded Solutions 

The focus of our investigations is a driver assistance system which is a lane change assistant 
that observes the area behind the vehicle and determines the speed of, and distance to, 
observed vehicles with reference to the speed of the observer vehicle. The system also 
checks whether the drivers of the observer vehicles has sufficient time to change lanes, and 
alerts him if there is a risk of collision. 
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The detection range of 10-150m was choosen to match driver reaction times and the high 
speeds encountered on highways. The field of vision is small. Lenses with a 30° aperture 
angle and a 25mm focal length are used. It was possible to apply the normal case of 
stereophotogrammetry. 
CMOS cameras are better suited than CCD cameras for outdoor applications — they have a 
wide dynamic range for brightness, and are not unduly affected by glare. The application 
requires a very high line resolution. The column resolution may be relatively low. Color is in 
fact more of a hindrance than a benefit for detecting vehicles, as the results from a simple 
algorithm can be corrupted by a multitude of color information. More complex algorithms 
use up more computation power. We had only CMOS cameras with a resolution of 
1024x1024 at our disposal. This forced us to increase the base of the measuring system to    
70cm. This allowed us to achieve a 1% relative error for the static case. An error of this order 
of magnitude is satisfactory for the lane change assistant. 
High speeds and very short reaction times mean very challenging real-time requirements. 
The system must be able to detect and locate a number of objects in the range of sight in a 
fraction of a second, i.e. approximately 5-8 images at 25 images/s. We deployed a hardware 
solution implemented in Altera FPGAs to calculate the distance. The system is based on the 
hierarchical algorithm described above and applies the NCCF. The system can cover a large 
detection range and provides approximately constant relative accuracy over the entire 
detection range. The calculations are performed during image acquisition and are completed 
approximately 70μs after image acquisition.  
A disparity map is generated and passed to the object detection and tracking stages with the 
help of embedded software. By skillfully distributing the algorithmic logic on a number of 
softcore processors (this can also be implemented in FPGAs), this step is also completed 
within one image acquisition time. The condensation algorithm is applied for object 
detection, and tracking is by Kalman filter. The Kalman filter needs a few images to settle 
when new objects enter the viewing range, and when there are periods when data drop-outs 
occur. If the environment capture time needs to be decreased significantly, faster cameras 
are needed. We only consider objects moving towards the vehicle or remaining at the same 
relative distance from the camera system. Finally, object locations, approximate object 
dimensions, and object speed are transferred to the master system. Experimental results for 
object imaging on a highway are shown in fig. 16 a. 

5.3 Robotics and Autonomous Vehicles 

The detection and tracking of objects both at a distance and at close range is common in 
road traffic scenes, environment capture systems for autonomous vehicles or robotic 
machines deal primarily with close-range objects. Key features of these close-range systems 
are:
• a large field of vision 
• outstanding accuracy 
• the ability to capture all objects in the vehicle/robot surroundings 
Some systems are designed to detect and track obstacles in a narrow driving lane only, or all 
objects in the surroundings that are needed to select alternative routes or to establish a free 
passageway. Detected objects could be identified with the help of image processing 
algorithms in very complex systems. Examples of such objects are signs and landmarks. 
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The Götting KG, FOX GmbH companies have joined together to produce autonomous 
vehicles based on conventional trucks. The speed of the vehicles fitted with standard, 
traditional detection and tracking systems based on laser scanners is very restricted at this 
time due to stringent safety requirements on company sites. Magdeburg University is 
involved in a project to develop a system consisting of a combination of 
stereophotogrammetric algorithms and a laser scanner that will capture all objects in the 
vehicle surroundings, and increase the approved speed. The vehicle in question is shown in 
fig. 16 b. 
A large aperture angle is needed for the relatively large field of vision. Should cameras with 
lenses smaller than 8 mm be deployed, then we recommend a rectification stage. The base of 
the stereo camera system can be reduced to 5-10 cm as the specified object distances are 
quite small (20-30m with typically moderate error specifications).  
We will not normally need the hierarchical algorithm to calculate the depth values described 
in section 4 because of the restricted detection range. We may be able to utilize simplified 
criteria such as the SAD function, as we may be operating under more favorable lighting 
conditions. 

clustered 
vehicle
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cluster
number

150 100 50 0 m

(a) (b)

Figure 16. a) Driver assistance system, b) Autonomous vehicle (FOX GmbH & Götting KG) 

Object detection and tracking is more difficult compared to section 5.2, as the objects are 
significantly more complex and can vary to a greater degree than with the driver assistance 
system described above. We can still apply the condensation algorithm and the stereo image 
analysis for gray value cameras for the simple case of obstacle detection. However, we 
recommend a color image processing system combined with complex signal processing for 
the capturing and possible identification of all objects. 

6. Conclusion 

The field of environment capture technology is vast: a wide range of different measured 
variables are processed. A complete picture of the surroundings can be provided by 
deploying very many sensors. In other words we can gain comprehensive information on 
the surroundings. Optical sensors and camera systems can be deployed in a variety of ways, 
so that massive amounts of varied information can be acquired with few sensors. 
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Image processing is the key technology applied for processing information from optical 
image sensors. Typical applications for image sensors include driver assistance systems, 
autonomous vehicles, and robotic machines. Stereo camera systems supply the necessary 
3-d information for environment capture and have crucial advantages. Image processing 
algorithms can be very complex and with high computation overheads.  
Robust solutions are needed for the applications cited. Challenging real-time requirements 
are often specified for robotic machines and driver assistance systems.  
We often have to modify signal processing algorithms very extensively in order to 
implement them in hardware. This is very challenging for continuous real-time processing 
at high speed. Thus, we present a hardware-software co-design for an algorithm for locating 
multiple objects in a variety of applications in section 4.  
The measurement technique is based on algorithms from stereophotogrammetry. We 
implemented an optimized algorithm in conjunction with image pyramids in an FPGA as a 
parallel structure in hardware that would cover a large detection range as required in driver 
assistance systems. The algorithm implemented in hardware consists of the NCCF 
calculation, subpixel interpolation, and depth histogram generation (condensation 
algorithm).  
Other object detection tasks (time histogram, clustering) and tracking system run on three 
processors, operating in a pipeline configuration in real time. We applied a Kalman filter to 
track captured objects — this was to smooth out jumps and invalid detections, and to 
successfully and accurately estimate distance and speed.  
There are a number of different approaches out there for generating disparity maps in 
hardware. Each of these approaches is suited for different applications. Many of these 
algorithms are established and well known. Much of the global research effort focuses on 
effective real-time hardware or software implementations.  
The standard of global research on higher-level processing techniques for analyzing the 
disparity map and image information is very high indeed. The development of reliable, 
robust, and real-time algorithms continues to be the prerequisite for a broad application 
base.
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1. Introduction     

There has been an increasing interest in the 3D imaging in the fields of entertainment, 
simulation, medicine, 3D visual communication, 3D tele-robotics, and 3D TV to augment the 
reality of presence or to provide vivid and accurate structure information. In order to 
provide vivid information in these and other 3D applications, efficient techniques to 
generate, store, and view the stereoscopic video are essential. While many methods are 
available for acquiring stereoscopic video, the images pairs obtained might not be in 
rectified form. Therefore, rectification is usually needed to support comfortable viewing and 
effective compression for storage and transmission. Projective geometry has been proved to 
be a useful tool for solving the rectification problem without camera calibration. However, if 
the matrices used for projective rectification (homographies) are not constrained properly, 
the rectification process can cause great geometric distortion. For visual applications, 
rectification with minimum geometry distortion should be pursued. In this chapter, we 
propose an improved algorithm to minimize the distortion by combining a newly 
developed projective transform with a properly chosen shearing transform. This new 
method is equipped with flexibility and can be adapted to various imaging models. 
Experimental data show that the proposed method works quite well for all the image pairs 
taken different imaging conditions. Comparison with other available method based on 
visual inspection and numerical data demonstrates the superiority of the new approach. 

2. Background 

Stereo vision is a technique for estimating 3D structure based on two or more images taken 
from different viewpoints, and are most often used in robotics and vehicle navigation. 
Stereoscopic videos are vastly used in entertainment, gaming, simulation, tele-conferencing, 
and tele-operation to augment the reality of presence. One of the major issues in the 
application of stereo imagery is correspondence problem. The correspondence problem is 
defined as locating a pair of image pixels from two different images, where these two pixels 
are projections of the same scene element. Given a point in one image, its correspondent point
(or point correspondence) must lie on an epipolar line in the other image. This relationship 
is well known as epipolar constraint (Faugeras, 1993). It is obvious that knowledge of this 
epipolar geometry, or codified as fundamental matrix, simplifies the stereo matching from a 
2-D area search to a 1-D search along the epipolar line. If the images are acquired from a 
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pair of identical cameras placed side-by-side and pointed in the same direction, known as a
rectilinear stereo rig, the epipolar lines will coincide with scan lines (x-axis) of the images. 
Given this ideal epipolar geometry, the correspondent points will lie on the same scan line 
in the two images. However, for an arbitrary placement of cameras, the epipolar lines are 
skew and the 1-D search will still be time consuming. Whether the imagery is used for 
stereo vision or stereoscopic video, we would like the image pair to be taken from an ideal 
epipolar-geometry.
When the epipolar geometry is not in ideal form, the image pairs can be warped to make 
correspondent points lie on the same scan lines. This process is known as image 
rectification, and can be accomplished by applying a 2D projective transforms, or 
homographies, to each image. The homography is a linear one to one transformation of the 
projective plane, which is represented by a ×3 3  non-singular matrix. The rectified images 
can then be treated as obtained by a rectilinear stereo rig and the correspondence problem is 
greatly simplified. Since most stereo algorithms assume input images having ideal epipolar 
geometry, image rectification is usually a pre-requisite operation for stereoscopic related 
applications. 
The idea of rectification has long been used in photogrammetry (Slama, 1980). The 
techniques originally used were optical-based, but now are replaced by software methods 
that model the geometry of optical projection.  The software-based photogrammetric 
approaches, similar to most of the computer vision ones, assume the knowledge of 
projection matrices or cameras parameters (Ayache & Hanse, 1988)(Ayache & Lustman, 
1991)(Fusiello, et al., 2000)These methods require camera parameters to compute a pair of 
homographies for transformations. The necessity of camera calibration is one of their 
disadvantages. 
In contrast to these traditional approaches, several researchers have developed techniques 
called projective rectification to rectify images directly without using camera parameters. They 
utilized the epipolar geometry of the acquired images and various criteria to compute the 
homographies. Robert et al. (Robert, 1997) attempted to find the transform that best 
preserves orthogonality around image centers.  Hartley (Hartley, 1999) proposed using 
minimization of the differences between matching points for the solution of homographies. 
He also gave a detailed theoretical presentation of the projective rectification. Loop and 
Zhang (Loop & Zhang, 1999) suggested decomposing each homography into projective and 
affine components. They then found the projective component that minimizes a defined 
projective distortion criterion. Gluckman and Nayar (Gluckman & Nayar, 2001) recently 
presented a stereo rectification method, which takes geometric distortion into account and 
tries to minimize the effects of resampling. Pollefeys (Pollefeys et al., 1999) proposed a 
simple and efficient algorithm for general two view stereo image.   The other available 
approaches include (Papadimitriou and Dennis, 1996) which considers only the 
special case of partially aligned cameras, and (Al-Shalfan et al., 2000) which requires 
the estimation of the epipolar geometry. Although these proposed methods provided many 
possibilities for projective rectification, they all solve the problem indirectly. That is, they 
must explicitly estimate the fundamental matrix before rectification. Since the solution of 
fundamental matrix has its own uncertainty (Zhang, 1998) this indirect approach might 
obtain unpredictable rectifying results.
Isgrò and Trucco (Isgrò & Trucco, 1999) adopted a different procedure and obtained 
homographies directly without first computing the fundamental matrix. However, in order 
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to solve the problem of uniqueness in rectification, their method requires disparity 
minimization along the x-axis to generate a unique solution. In certain applications, this 
modification of x-axis disparity in rectification might be harmless; however, in applications 
where original x-axis disparity must be maintained (e.g. for stereoscopic viewing purpose), 
this constraint will make the algorithm useless. Moreover, the enforcement of minimizing x-
axis disparity to obtain a single solution sometimes greatly distorts the image. 

In this chapter, we propose a different approach for rectifying two uncalibrated images with 
reduced geometric distortion. Its novelty is to formulate a new set of parameters for 
homographies, and solves the rectification problem using least square distance as a 
criterion. This new approach possesses similar advantage to that of the IT method (Isgrò & 
Trucco, 1999), that is, performing uncalibrated rectification without explicit computation of 
the epipolar geometry (fundamental matrix). However, the new method contains a shearing 
transform which greatly reduces geometric distortion caused by rectification. 

'll

Figure 1. Epipolar geometry of a pair of stereo images 

3. Epipolar geometry 

The derivation of our algorithm is presented from the viewpoint of projective geometry 
(Faugeras, 1993). The image point is expressed in homogeneous coordinate and represented 
by a 3-dimensional column vector. Column vectors are denoted by bold lower-case letters, 
such as m  and l . Matrices are represented by bold upper-case letter, such as F  and H .
Transposed vectors and matrices are expressed by adding a letter T as superscript, e.g., 

Tm and TF .

3.1 Epipolar constraint  

Consider two images I and ′I of a common scene. Let C  and ′C represent the optical 
centers of the left and right cameras in the 3D coordinate, respectively. Points m and ′m are
the projections of a certain 3D point M on the left ( I ) and right ( ′I ) images, as shown in 
Fig. 1. There are two points called the epipoles of the left and right images; one epipole ′e is
the point where the center of projection C of the left camera would be visible in the right 
image, and the other epipole e is the point where the center of projection ′C of the right 
camera is seen in the left image. In the 3D coordinate, e and ′e are the intersection points of 
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the baseline, ′CC , with the left and right image planes. Any plane that contains the baseline 
and a 3D scene point (e.g. M above) is called epipolar plane.

The epipolar lines ( l and ′l in Fig. 1) are defined as the intersection of the epipolar plane 
and the left and right image planes. The ray goes through the optical center of one camera 
( C ), which creates an image point ( m ) on the image plane, will generate an image of 
epipolar line on the other camera ( ′l ). One specific matrix called fundamental matrix
describes this mapping between points in one image and the corresponding epipolar line in 
the other image. Given the scene point M, and its two projections ( m and ′m ) on the left 
and right image planes, the epipolar constraint (Faugeras, 1993) asserts that point ′m  must lie 
on the epipolar line Fm and can be expressed as 

T′ =m Fm 0  or T T ′ =m F m 0   (1) 

Where F is called fundamental matrix, or F matrix, and 0 0 0 T=0 is a zero column 
vector. The matrix F is a ×3 3  matrix with rank 2, and the epipoles for the left ( ∈ Ie ) and 
the right image ( ′ ′∈ Ie ) satisfy 

T ′= =Fe F e 0   (2) 

That is, the epipoles e  and 'e are the null space of F  and TF , respectively. Furthermore, all 
the epipolar lines ( l and ′l ) will pass the epipoles, or 

0T T′ ′= =l e l e  (3) 

3.2 Epipolar geometry after stereo image rectification 

Image rectification can be treated as a process of converting the epipolar geometry of an 
image pair into a canonical form. This can be done by applying a homography, which maps 
the epipole to a point at infinity, to each image. We designate these two epipoles after 
rectification as ∞e  and ∞′e , where 1 0 0 T

∞ ∞′= =e e , and fundamental matrix of a pair of 
rectified images has the form of 

0 0 0
0 0 1
0 1 0

∞ = −F  (4) 

Let ( ), ′m m  be an image pair in the rectified images corresponding to the original ( ), ′m m
pair. From equation (1), the epipolar constraint after rectification can be rewritten as 

0T
∞′ =m F m   (5) 

Meanwhile, the rectification can be accomplished by the following operations: 

=m Hm , ' '′ =m H m    (6) 
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where H and ′H are the rectifying homographies (or H matrices) for the left and right images, 
respectively. Combining (5) and (6) we obtain the following equation: 

 0T T
∞′ ′ =m H F Hm  (7) 

Given several point correspondences, or ( ), ′m m  pairs, equation (7) can be solved to obtain 
homographies ( H and ′H ). However, solution for the pair of H matrices ( H , ′H ) is not 
unique. Some of the solutions are even far from ideal and can cause huge geometric 
distortion. Various approaches have been proposed to find a unique pair of homographies 
( H , ′H ) that minimize image distortion. This and other rectification related backgrounds 
are the topics of the next section. 

4. Image Rectification 

Several projective rectification methods have been proposed recently, and the backgrounds 
on these methods that are most related to our algorithm will be described below. On the 
basis of these methods, we propose our new approach to solving the projective rectification 
problem. 

4.1 Review of projective rectification 

Rectification based on epipolar geometry was originally developed by Hartley (Hartley, 
1999). In order to constrain the geometric distortion caused by rectification, Hartley 
proposed that one of the two homographies, say ′H , should be close to a rigid 
transformation in the neighborhood of a selected point 0p . That is, the homography for one 
of the image ( ′I ) can be represented by 

′ =H KRT  (8) 

where T is a translational vector taking 0p to the origin, R is a rotation matrix mapping the 

epipole to a point 1 0 Tf on the x-axis, and K is a transformation matrix mapping 

1 0 Tf to a point 1 0 0 T at infinity along the x-axis . Moreover, matrix K can be 
expressed as 

1 0 0
0 1 0

0 1f
=

−
K  (9) 

In this way, ′H depends only on two parameters: f and rotation angle θ . If the translational 
vector T  is neglected, then ′H becomes

0
0
1

cos sin
sin cos
cos sinf f

θ θ
′ = − θ θ

− θ − θ
H  (10)  
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Given the F matrix, positions of the epipoles can be found by Equation (2). By following the 
above process, we can then obtain ′H to rectify the image ′I  by mapping the epipole ′e  to 

the infinite point 1 0 0 T  and transforming the epipolar lines to lines parallel with the x-
axis. The next step is to find the matrix H  which can be applied to the other image to match 
up these new epipolar lines. 

The strategy that Hartley took to find H  (a matching transformation) is to minimize the 
sum-of-squared distances (Hartley, 1999): 

2( , )i i
i

d ′ ′Hm H m   (11) 

The searching of H  by minimizing 2( , )i i
i

d ′ ′Hm H m  is not as straightforward as it seems. 

That is, the matrix H  is first decomposed into a form of = A 0H H H  where 

A 0 1 0
0 0 1

a b c
=H , and 0 ′=H H M  (12) 

and AH  matrix represents an affine transformation. It was proven (Hartley, 1999) that F
matrix can be factorized as ×= [ ]F e M  where M  is a three-parameter family of non-singular 
matrices, and ×[ ]e is an antisymetric matrix generated from vector e  as follows:  

3 2

3 1

2 1

0
[ ] 0

0

e e
e e
e e

×

−
= −

−
e  (13)  

Note that 1 2 3[ ]Te e e=e  is the epipole of the image I . Therefore, instead of minimizing 
2( , )i i

i
d ′ ′Hm H m  directly, the following steps are taken: 

1. Matrix ′H  is found first.  
2. The feature points on both images are transformed by 

0
ˆ
ˆ

i i i

i i

′= =
′ ′ ′=

m H m H Mm
m H m

 (14) 

3. 2
A

ˆ ˆ( , )i i
i

d ′H m m is minimized to find the matrix AH by least square. (Note that this step 

would remove the x-disparity) 
4. Matrix H  is obtained by A 0=H H H
To further evaluate performance of the proposed algorithm, Hartley's method will be 
implemented and applied to the same sets of image pairs for comparisons in the later 
section of experiments. Algorithm of Hartley's approach has been briefly described above 
and is summarized below. 
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Outline of Hartley's Algorithm 
1. Identify a set of point correspondences { 1,i i i N′↔ =m m } between the two input 

images. Seven points at least are needed, though more are preferable. 
2. Compute the fundamental matrix F and find the epipoles e  and ′e  in the two images. 
3. Select a projective transformation ′H  that maps the epipole ′e  to the point at infinity 

on the x-axis, 1 0 0 T .
4. Find the matching transformation H that minimizes the least-squares distance 

2( , )i i
i

d ′ ′Hm H m .

5. Resample the first image according to the transformation H  and the second image 
according to the projective transformation ′H .

The number of parameter needs to be estimated is ten in the above process which includes 
the computation of matrix F that requires estimation of seven parameters. The Matlab codes 
for implementation of the Hartley’s method are available from (Hartley, 2004). 

4.2 Proposed method and F matrix parameterization 

In this section, taking a distinct approach in representing the matrix H , we propose a new 
method to solving the two homographies. Unlike the way H is parameterized in as 

= A 0H H H  in Hartley’s approach, the proposed method adopts a more direct form of 
parameterization for H , that is 

1 2 3

4 5 6

7 8 1

h h h
h h h
h h

=H  (15) 

Since the homography pair, H and ′H , are determined up to a scale factor, we can set 
′= =3 3 3 3 1( , ) ( , )H H . Combining equations (5), (6) and (7) gives us 

T T T T
∞ ∞′ ′ ′ ′= = =m F m m H F Hm m Fm 0 , where T

∞′=F H F H  (16) 

By following Hartley’s proposition that ′H is very close to a rigid transformation, as shown 
in (10), and substituting ∞F , ′H , and H in equations (4), (10) and (15) into F , we can 
parameterize and estimate F matrix as follows: 

1 2 3

4 5 6

7 8

4 7 5 8 6

4 7 5 8 6

4 5 6

0 0 0 0
0 0 0 1
1 0 1 0 1

cos sin
ˆ sin cos

cos sin

cos sin cos sin cos sin
sin cos sin cos sin cos

T h h h
h h h

f f h h

h f h h f h h f
h f h h f h h f

h h h

θ θ
= − θ θ −

− θ − θ

− θ+ θ − θ+ θ − θ+ θ
= − θ− θ − θ− θ − θ− θ

F

  (17) 
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Obviously, the F matrix is determined by only seven parameters, as shown in vector form 

4 5 6 7 8
Tf h h h h h= θ  (18) 

However, due to the characteristics of ∞F , only five out of eight parameters in matrix H are 
obtained, which leaves the solution for H not unique.  To solve this uniqueness problem, 
Hartley’s method suggests minimizing the discrepancy after rectification, as is described in 
Equation (11). In contrast, we propose using shearing transform formulated in section 3.4 to 
obtain a unique solution. Our approach results in lower geometric distortion as will be seen 
in the result section. Note that we have combined the problems of rectification and 
estimation of F matrix. In the next subsection, we will show how to derive a least-square 
solution for the rectification problem from the viewpoint of F matrix estimation. This novel 
parameterization scheme combining with a shearing transform, leads to a unique solution. 

4.3 Projection rectification based on least square distance  

The quantity used in Hartley’s method for minimization, as shown in equation (11), is a 
linear criterion without physical meaning. In rectification, we would like the criterion to be 
something geometrically meaningful and to be measurable in the image plane. One such 
quantity is the distance from a point ′im  to its corresponding epipolar 

line 1 2 3
T

i i l l l′ ′ ′ ′= =l Fm , as shown in Fig. 2. This distance is given by the following 
equation:

( ) ( )
2 2 2 2

1 2 1 2

, ,
T T

i i i i
i i i id d

l l l l
′ ′ ′′ ′ ′= = =

′ ′ ′ ′+ +
m l m Fmm l m Fm     (19) 

Conversely, distance for a point im  to its corresponding epipolar line 

1 2 3
TT

i i l l l′= =l F m  is 

( ) ( ) 2 2 2 2
1 2 1 2

, ,
T T T

T i i i i
i i i id d

l l l l
′′= = =

+ +
m l m F mm l m F m  (20) 

Figure 2. Distance from a point to the epipolar line of its correspondent point 

im
id

i i′=l Fm
i′m

id′ i i′ =l Fm

I I′
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Minimization of this distance is originally used to estimate F matrix (Zhang, 1998), which 
generates 36 possible modes of solution. Surprisingly, it turns out to be a very good H matrix
estimator with a unique solution under our new formulation. We now demonstrate how to 
find the solution by minimizing the distance defined above.  
To prevent inconsistency of the epipolar geometry between the left and right images, we 
choose to operate simultaneously on both images and minimize the mean-square distance. 
Hence, the problem becomes 

( ) ( )( )2 21min
2

, , T
i i i

i
d d′ ′+

F
m Fm m F m  (21) 

Using equations (19), (20) and the fact that ′Ti im Fm ′= T T
i im F m , we reformulate the 

minimization problem in (21) as: 

( ) ( ) ( )2 2 2

2 2 2 2
1 2 1 2

1min min
2 2

T T T T
i i i i i i

i
i i

w
l l l l

′ ′ ′
+ =

′ ′+ +F F

m Fm m F m m Fm
  (22) 

where 2 2 2 2
1 2 1 2

1 1
iw

l l l l
= +

′ ′+ +
.

Given N point correspondences from the image pair ( ′↔ = 1,i i i Nm m ), the search for 
parameter vector , which is to be used in = ( )F F , ( )H = H , and ′ ′( )H = H ,
becomes a nonlinear optimization problem, that is 

2

1

1 ( )min
2

TN
i i

i
i

w
N =

′
F

m Fm  (23) 

To simplify the derivation, we can restructure the matrix equation by turning a matrix into a 
vector.  Assume that the ×3 3 fundamental matrix in vector form is = 1 2 3F F F F ; then 
we can use vec operator to convert the matrix F into a column vector f by stacking the 
columns of F , or 

1

2

3

( )= =
F

f vec F F
F

 (24) 

Let symbol ⊗  denote Kronecker product; then 

( )TT
i i i i′ ′= ⊗m Fm m m f  (25) 

Substituting (25) into (23) yields the objective function in vector form. That is 
2 21 2 2 1 2

1 1

1 ( ) 1 1( )
2 2 2

/ /
TN N

Ti i
i i i i N

i i
w w

N N N= =

′ ′= =m Fm m Fm W U f   (26)  

where W is an N N× diagonal matrix and NU  is an × 9N matrix : 
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1

2
1 2

0 0
0 0

diag
0 0

0 0

N

N

w
w

w w w

w

= =W  ,

( )
( )

( )

1 1

2 2

T

T

N

T
N N

′ ⊗

′ ⊗
=

′ ⊗

m m

m mU

m m

.

Given these new notation, minimization of the mean-square distance in (23) can now be 
rewritten as 

21 21
2

/min NNf
W U f  (27) 

The solution for f in (27) can be found by any standard nonlinear minimization method. We 
chose the Levenberg-Marquardt algorithm because of it effectiveness and popularity. Before 
applying this minimization process, we need to derive the Jacobian matrix of (26), or 

∂
∂

1 2/( )NW U f . In order to simplify the computation of this Jacobian matrix, we modify 

our iteration of the minimization process by using the old W value from the previous 
iteration to compute the new Jocobian matrix. That is, 

{ }1 2 1 2
1 1

/ /( ) ( ) ( ) ( )k N k k N k
k k

− −
∂ ∂=

∂ ∂
W U f W U f

Therefore, even though W is a function of , we can treat it as a constant to  in current 
iteration. Since factor 1 2/

NW U  inside the partial derivative can be treated as constant 
for , the Jacobian matrix can then be reduced to a simpler form 

1 2 1 2/ /( ) ( )N N
∂ ∂=

∂ ∂
W U f W U f  (28) 

Therefore, we only need to compute ∂
∂

f  for the Jocobian matrix of (26) as follows  

4 7

4 7

4

5 8

5 8

5

6

6

6

4 4 7

4 4 7

0 0 0
0 0 0

0

cos sin
sin cos

cos sin
sin cos

cos sin
sin cos

cos sin cos cos sin
sin cos sin sin cos

h f h
h f h

h
h f h
h f h

h
h f
h f

h

h h f h f
h h f h f

− θ + θ
− θ − θ

− θ + θ
∂ ∂ − θ − θ=

∂ ∂

− θ + θ
− θ − θ

− θ θ + θ − θ θ
− θ − θ + θ − θ − θ

=

f

5 5 8

5 5 8

6 6

6 6

0 1 0 0 0 0
0 0 0
0 0 0

0 0 0 1 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0 1 0 0

cos sin cos cos sin
sin cos sin sin cos

cos sin cos cos
sin cos sin sin

h h f h f
h h f h f

h h f f
h h f f

− θ θ + θ − θ θ
− θ − θ + θ − θ − θ

− θ θ + θ − θ
− θ − θ + θ − θ

          (29) 
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 The Jacobian matrix can be obtained by substituting (29) into (28), which is then used in an 
iterative process of Levenberg-Marquardt algorithm to find the parameter vector . This 
minimization algorithm contains an iterative process, which must start with an initial 
estimate of the F matrix, and the ideal F matrix of a pair of rectified images can be used, that 
is,

0

0 0 0
0 0 1
0 1 0

ˆ
∞= − =F F

A comparison of 0F̂ with the parameterization of F̂ in (17) shows that 0F̂ corresponds to an 

initial parameter vector of = θ0 4 5 6 7 8
Tf h h h h h = 1 0 0 1 0 0 0 T .

An iterative process can now be applied to find the solution of  after proper stop 
conditions have been set. 

4.4 Homography with minimal geometric distortion 

After the parameter vector = θ 4 5 6 7 8
Tf h h h h h  has been found, the values of 

the vector can be used to calculate the pair of rectifying homographies shown as below 

1 2 3

4 5 6

7 8 1

h h h
h h h
h h

=H ,
0
0
1

cos sin
sin cos
cos sinf f

θ θ
′ = − θ θ

− θ − θ
H   (30) 

Obviously, the only parameters left to be estimated are 1 2 3[ ]h h h . Since this vector does 
not affect the coordinate of y-axis, we can simply set it to [1 0 0]  and obtain satisfactory 
rectifying results. However, to achieve a certain purpose, we can apply specific constraint on 
the transformed coordinate of x-axis and obtain different values for 1 2 3[ ]h h h . For 
example, minimization of equation (11) has been used as an extra constraint to reduce the 
disparity of x-axis between two rectified images. This approach can reduce the range of 
search for stereo matching and increase the speed on solving the correspondence problem. 
However, in applications where the x-axis disparity should not be modified too much, other 
constraint can be used for acquiring the values of 1 2 3[ ]h h h . One suitable constraint is to 
keep the aspect ratio of the original image invariant after rectification. We will adopt the 
idea of shearing transform described in (Loop & Zhang, 1999) to achieve this purpose, and 
the procedure will be stated below. As will be shown in the experimental section, this 
approach not only maintains the aspect ratio of the original image but also reduces the 
overall geometric distortion. 

Assume that the parameter vector = θ 4 5 6 7 8
Tf h h h h h  has been found by 

following the procedure described in the previous section. Let 1 2 3[ ]h h h = [1 0 0] ;
then we have a preliminary solution of homographies   
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0 4 5 6

7 8

1 0 0

1
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θ θ
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− θ − θ
H

To keep the aspect ratio invariant after rectification, these two homographies can further be 
combined with the shearing transform defined below 

0
0 1 0
0 0 1

s

a b
=H

0
0 1 0
0 0 1

s

a b′ ′
′ =H  (31) 

The final homographies for the rectification can then be written as 

0 0

0
0 1 0
0 0 1

s

a b
= =H H H H 0 0

0
0 1 0
0 0 1

s

a b′ ′
′ ′ ′ ′= =H H H H   (32) 

Using 0H  and ′0H  alone can rectify the image pair such that the coplanar condition is 
satisfied; however, combined with sH  and ′sH  respectively, we can further improve the 
appearance of the final rectification results. A detailed description of the shearing transform 
can be found in (Loop & Zhang, 1999), but its adaptation to our usage will be briefly 
described below.  

Figure 3. Center points used for computing shearing transform matrices 

For a given image with width w and height h, coordinates of the midpoints on its four 
boundaries are shown in Fig. 3 and can be represented as   

1 0 1
2
- Tw=a , 11 1

2

Thw −= −b , 1 1 1
2

Tw h−= −c , 10 1
2

Th −=d

The two central lines are expressed as 
= −x b d = -y c a

Let â , b̂ , ĉ , d̂  be the coordinates of these four midpoints after transformation by 0H , or 

a

b

c

d
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The other three points ( b̂ , ĉ , d̂ ) can be found by the same way, and the two central lines 
after rectification become 

0ˆ ˆˆ T
u vx x= − =x b d , 0ˆ ˆˆ T

u vy y= − =y c a

The perspective component of 0H causes the projective rectification to generate distortion, 
and the shearing transform sH , which is used to reduce the distortion, can be found by 
satisfying the following two constraints: 

 1. Orthogonal::                            Tx y = 0ˆ ˆ( ) ( )T
s s =H x H y  (34) 

 2. Invariant aspect ratio:      
T

T

x x
y y

=
2

2

w
h

ˆ ˆ( ) ( )
ˆ ˆ( ) ( )

T
s s

T
s s

=H x H x
H y H y

 (35) 

where
0

0 1 0
0 0 1

s

a b
=H . Expanding equations (34), (35) and solving the quadratic 

polynomials of a and b based on the techniques similar to that were described in (Loop & 
Zhang, 1999), we obtain 

2 2 2 2h w
hw( )

v v

v u u v

x ya
x y x y

+
=

−
,

2 2h w
hw( )

u v u v

u v v u

x x y yb
x y x y

+
=

−
  (36) 

Substituting ,a b  into equation (31) yields shearing transform matrix sH . In order to make 
all the rectified pixels appear within the visible range, a must be positive. If a is a negative 
value, then both a and b are multiplied by -1. Elements a’ and b’ of matrix ′sH  can be found 
by the same way. After sH  and ′sH  were obtained, the final homographies used for 
rectification with minimal distortion become = 0sH H H , ′ ′ ′= 0sH H H . They then can be used 
for resampling to complete the process of projective rectification.  

5. Results and discussion 

To evaluate performance of the proposed method, several indoor image pairs acquired from 
the INRIA web site and CMU (please see Acknowledge section) were tested. For each image 
pair, a set of ten point correspondences were selected from each image and used to compute 
the H matrices for rectification. Selection of these point correspondences takes a semi-
automatic approach to avoid inaccuracy. That is, each point is chosen approximately by 
hand, and then a precise (subpixel accuracy) feature point close-by is then detected by 
Harris corner finder (Harris, 1998) inside a local search window. This approach not only 
makes the selection very easy, it also greatly improves the accuracy. To achieve the best 
results, these points are chosen to be evenly distributed over the entire image area. 
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5.1 Visual evaluation of rectifying results 

The original and rectified image pairs are shown in Figures 4~8 for visual comparison, 
where the top is the original image pair, the middle and the bottom are the rectified results 
of the method proposed and the Hartley’s method, respectively. To achieve a more robust 
estimation of F matrix in Hartley’s method, RANSAC (Torr &  Murry, 1997) is used. 
RANSAC calculates for each F the number of inliers, in which the chosen F is the one that 

maximizes it. Once the outliers are removed, F is recalculated with the aim of obtaining a 

better estimation. The solution for the pair of homogphies in the proposed method can be 
found in less than 100 iterations by Levenberg-Marquardt algorithm, and the re-sampling 
can be done in real time by look up table. As shown in these figures, all the re-sampled 
image pairs are properly rectified by the proposed method with minimal geometric 
distortions. In order to make visual evaluation of the rectified results more convenient, four 
horizontal lines are added to identify the difference of y-disparity before and after 
rectification.  
In all the figures, it’s obvious that our proposed method has less geometric distortion than 
that of Hartley’s method. In Fig. 4, the Hartley’s method greatly distorts the right image in 
the process of minimizing x disparity. Our method shows its capability in maintaining the 
angle and aspect ratio of the objects in the scene. However, the Hartley’s method is not able 
to keep these properties invariant. The main reason for the distortion after rectification is 
because the image content contains a variety of depth values and therefore many different 
amounts of y-disparity. When the rectification algorithm tries to minimize the disparity all 
over the image region, distortion occurs. Overall, the proposed method keeps the objects in 
better shape than that of the Hartley’s method. The greater geometric distortion of the 
Hartley’s method is due to its minimization of the x-disparity. 

5.2 Quantitative evaluation of rectifying results 

In addition to the above visual comparisons, quantitative evaluation based on the changes in 
y disparity is also conducted as follows. The ( ),x y coordinates for the ten chosen point 
correspondences in one image pair (Balmouss) before and after rectification by the proposed 
method are shown in Tables 1 for numerical evaluation. Obviously, the x disparities for the 
selected points have not changed too much after rectification. To estimate the accuracy of 
the rectification process numerically, we define the mean of the absolute difference (MAD) 
of y coordinate,| |yΔ , for the original and rectified image pair as 

1

1

1 |( ) ( ) : original

1 |( ) ( ) : rectified

|
| |

|

N

org i y i y
i

N

rec i y i y
i

Ny

N

=

=

′ε = −
Δ =

′ ′ε = −

m m

Hm H m
 (37) 

where ( )y⋅ indicates the y coordinates and ( ),i i′m m  represents the coordinates of the ith pair of the 
point correspondences.  
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Figure 4. Aout image pair of INRIA. (a)Top row: original images. (b)Middle row: rectified 
images using the proposed method. (c)Bottom row: rectified images using Hartley’s 
method. The proposed method has much lower visual distortion. 
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Figure 5. Rectifying results of the castle image from CMU/CIL (vary large y-disparity)  

(a) Top row: original images.  

(b) Middle row: rectified images using the proposed method.  

(c) Bottom row: rectified images using Hartley’s method. 
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Figure 6. Rectifying results of the BalMouss image pair 

(a) Top row: original pair of images.  

(b) Middle row: rectified images using the proposed method. 

(c) Bottom row: rectified images using Hartley’s method  
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Figure 7. Rectifying results of Rubik image pair from INRIA  

(a) Top row: original images.  

(b) Middle row: rectified images using the proposed method.  

(c) Bottom row: rectified images using Hartley’s method 
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Figure 8. Rectifying results of Tot image pair from INRIA  

(a) Top row: original images.  

(b) Middle row: rectified images using the proposed method. 

(c) Bottom row: rectified images using Hartley’s method 
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A desirable property of the method is to minimize the | |yΔ , but keep the value of | |xΔ
invariant after rectification. When these ten chosen point correspondences were used for 
| |yΔ  computation, the results before and after rectification for the above six image pairs are 

listed in Table 2. If an image pair is ideally rectified, | |yΔ  of the point correspondences after 
rectification should be zero. As can be seen from the table, for all the image pairs, values of 
| |yΔ  after rectification of our proposed method ( recε ) are all less than 1 pixel. They are 
greatly reduced compared with the values before rectification ( orgε ), indicating the 
effectiveness of the proposed method. However, some image pairs can not be satisfactorily 
rectified by the Hartley’s method.  

Before rectification 
x-axis 127 136 231 253 411 271 275 361 528 736 Left 

image y-axis 91 533 336 312 65 321 481 349 499 93 
x-axis 55 64 208 235 255 255 297 320 508 587 Right

image y-axis 77 501 302 277 49 286 428 307 426 69 
After rectification 

x-axis 127.37 136.81 233.38 256.66 419.84 274.49 278.59 368.33 543.28 766.42 Left 
image y-axis 77.376 509.38 318.49 295.32 53.493 304.77 462.15 333.97 487.31 82.733 

x-axis 54.952 63.16 217.2 248.1 271.86 270.85 317.76 345.53 576.92 682.91 Right
image y-axis 77.7 509.42 318.34 294.79 53.058 305.45 462.12 333.87 487.32 82.917 

Table 1. Coordinates of point correspondences before and after rectification for Balmouss
image pair based on the proposed method. 

Table 2. MAD of y-coordinate before ( orgε ) and after rectification with the proposed ( recε ) or 
Hartley’s  method ( _rec Hε ). Evaluation based on 10 selected point correspondences.  

6. Comparisons and discussion 

Compared with the results presented in Hartley (Hartley, 1999), our new method has the 
following advantages:  

     Image 
          name 

MAD_y

Aout Image 
pair

Castle image 
pair

Balmouss 
Image pair 

Rubik image 
pair

Tot image 
pair

orgε (pixel) 13.6 26.7084 35.8598 12.8 13.9577 

recε (pixel) 0.6322 0.5084 0.2477 0.6389 0.2779 

_rec Hε (pixel) 14.9539 0.4731 21.8769 14.2357 4.8668 
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1. Our method has much less geometric distortion visually, even when the image pair has 
large difference of viewpoints (Fig. 4). Further comparisons with the Hartley’s method 
on geometric distortion are presented in Figs. 5-8 using four other image pairs.   

2. The new method avoids using the similar constraint shown in (11) in order to obtain a 
unique solution. This extra x-axis disparity minimization step, which is used in deriving 
the Hartley’s method, will be unreasonable if the rectified result is used for stereoscopic 
viewing. Instead of minimizing x-axis disparity, shearing transform is used in our 
algorithm to preserve aspect ratio and reduce geometric distortion.   

3. Solving the rectification problem directly without first computing the F matrix makes 
the proposed method avoid the problem of selecting proper method for F matrix 
estimation.

4. Initial value of the nonlinear solution by iteration is much easier to set. The initial 
parameter vector 0  is simply set to 1 0 0 1 0 0 0 T .

We use the same initial guess of the optimization process for all the images tested and the 
solutions always converge. The iteration stops after the error is smaller than a preset 
threshold. Although we are not sure if the true minimum is obtained, the rectified results 
show its robustness, even for image pair with very different view like Fig. 4. Since we are 
not looking for the true minimum to obtain an optimal solution, the convergence towards 
the true minimum is not guaranteed. If further improvement is needed, some approaches 
which can avoid local minimum might be taken. 
Most of the projective rectification methods proposed all base their algorithms on an 
estimation of the F matrix. However, as has been stated in (Zhang, 1998), the F matrix 
estimator has its own uncertainty. Our approach, similar to the IT method (Isgrò & Trucco, 
1999), avoids F matrix estimation procedure and obtains homographies directly. 
Furthermore, it improves on the Hartley’s method and obtains rectifying results with 
reduced geometric distortion. 

7. Conclusion 

This chapter presented a new way of parameterizing the homography, which leads to a new 
approach of projective rectification for stereo images. Compared with the previous works, 
the novelty of this new algorithm is that it uses mean-square distance as minimization 
criterion which has more well-defined geometric meaning. Furthermore, instead of putting 
constraint on x-axis disparity, we use shearing transform to achieve a single solution for the 
projective rectification problem, and greatly reduce the geometric distortion. Visual 
inspection and quantitative evaluation of the rectification results show the accuracies of the 
proposed method and its low geometric distortion. Experiments on different types of image 
pairs with various y-disparity values have been conducted, and the results show that the 
proposed method can effectively reduce the geometric distortion. 
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1. Stereo, motion and structure 

Using a calibrated stereo pair is a common and practical solution to obtain reliable 3-D 
reconstructions. In its simpler formulation, once the stereo rig is calibrated, the depth of 
points in the image is estimated by applying triangulation (Trucco & Verri, 1998). In order to 
obtain accurate depth estimates, the cameras are usually separated from each other by a 
significant baseline thus creating widely spaced observations of the same object. The 
disadvantage of this configuration though, is that having a wide baseline makes the 
matching of features between pairs of views a more challenging problem. 
On the other hand, the task of computing temporal tracks from single camera sequences is 
relatively easier since the images are closely spaced in time. As a drawback, disparities may 
be insufficient to obtain a reliable depth estimation and, as a result, longer sequences are 
needed to infer the 3-D structure. Particularly, in the case of non-rigid structure, a sufficient 
overall rigid motion is necessary to allow the algorithms to estimate the reconstruction 
parameters correctly. 
Hence, a question of relevant interest is the feasibility of an approach that efficiently fuses 
the positive aspects of both methods. The problem of recovering 3-D structure using a 
stereo-rig moving in time or a stereo rig looking at a moving object has been defined for the 
rigid case as the stereo-motion problem (Waxman & Duncan, 1998; Dornaika & Chung, 
1999; Stein & Shashua 1998; Mandelbaum et al., 1999). Ho and Chung (Ho & Chung, 2000) 
were the first to formulate this problem within the factorization scenario. Following a 
similar direction, we introduce a multi-camera motion model that is able to deal with a time-
varying shape and we present a linear solution based on the factorization framework that is 
subsequently optimized with a non-linear procedure. 
Schematically, the chapter is structured as follows. The inference of 3-D structure from an 
image sequence (single camera case) is introduced in Section 2, focusing particularly on the 
case of a deforming body. The next section will show how the presented framework, based 
on a factorization solution of the problem, can be consistently extended to the case of 
multiple cameras viewing a deforming body and a linear solution to the problem will be as 
well provided. Section 3 introduces a non-linear optimization strategy to refine the linear 
solution obtained with the previous method and Section 4 will validate the presented 
approaches with experimental tests on synthetic and real deforming bodies. Finally we 
present further considerations over the presented framework and its future extensions. 
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2. Background: the monocular case 

2.1 Rigid factorization 

Tomasi and Kanade's factorization algorithm (Tomasi & Kanade, 1992) for rigid structure 
provides a maximum likelihood estimate for affine structure and motion under the 
assumption of isotropic Gaussian noise. The key idea is to gather the 2-D image coordinates 
of a set of P points tracked throughout F frames into a measurement matrix W2F x P.
Assuming affine viewing conditions, the measurement matrix can be expressed analytically 
as a product of two matrices: W = M S where M is a 2F x 3 motion matrix which expresses 
the pose of the camera and S is the 3 x P shape matrix which contains 3-D locations of the 
reconstructed scene points. Therefore the rank of the measurement matrix is constrained to 
be r  3. This constraint can be easily imposed by taking the Singular Value Decomposition 
of the measurement matrix and truncating it to rank 3: SVD(W) = U2F x 3 D3x3 V3xP = M2F x 3

S3xP. In this way the image measurement matrix can be factorized into its motion and shape 
components. 

2.2 Non-Rigid motion: the single camera case 

Tomasi and Kanade's factorization algorithm has recently been extended to the case of non-
rigid deformable 3-D structure (Bregler et al., 2000). Here, a model is needed to express the 
deformations of the 3-D shape in a compact way. The chosen model is a simple linear model 
where the 3-D shape of any specific configuration of a non-rigid object is approximated by a 
linear combination of a set of D basis-shapes which represent the D principal modes of 
deformation of the object for P points. A perfectly rigid object would correspond to the 
situation where D=1. Each basis-shape (S1 S2 … SD) is a 3 x P matrix which contains the 3-D 
locations of P object points for that particular mode of deformation. The 3-D shape of any 
configuration can then be expressed as a linear combination of the basis-shapes Si:

ℜ∈ℜ∈ ×
d

P
ddd

D

d
lSSSlS 3

1=

,=  (1) 

where li are the deformation weights. If we assume a scaled orthographic projection model 
for the camera, the coordinates of the 2-D image points observed at each frame i are related 
to the coordinates of the 3-D points according to the following equation:  
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is a 2 x 3 matrix which contains the first and second rows of the camera rotation matrix and 
Ti contains the first two components of the camera translation vector. Weak perspective is a 
good approximation when the depth variation within the object is small compared to its 
distance to the camera. The weak perspective scaling (f/Zavg) is implicitly encoded in the li

coefficients. We may eliminate the translation vector Ti by registering image points to the 
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centroid in each frame. In this way, the 3-D coordinate system will be centred at the centroid 
of the shape S. If the same P points can be tracked throughout an image sequence we may 
stack them into a 2F x P measurement matrix W and we may write:  

MS
S

S

RlRl

RlRl

W

W
W

DFFDFF

D

F

=

...

...

=

1

1

111111

=  (4) 

Since M is a 2F x 3D matrix and S is a 3D x P matrix, the rank of W when no noise is present 
must be at most 3D. Note that, in relation to rigid factorization, in the non-rigid case the 
rank is incremented by three with every new mode of deformation. The goal of factorization 
algorithms is to exploit this rank constraint to recover the 3-D pose, and shape (basis-shapes 
and deformation coefficients) of the object from the correspondence points stored in W.

2.3 Non-rigid factorization 

The rank constraint on the measurement matrix W can be easily imposed by truncating the 
SVD of W to rank 3D. This will factor W into a motion matrix M~  and a shape matrix S~ .
However, the result of the factorization of W is not unique since any invertible 3D x 3D
matrix Q can be inserted in the decomposition leading to the alternative factorization 

)
~

)(
~

(= 1SQQMW − . The focal problem is to find a transformation matrix Q that imposes the 
replicated block structure on the motion matrix M~  shown in (4) and that removes the affine 
ambiguity upgrading the reconstruction to a metric one. Whereas in the rigid case the 
problem of computing the transformation matrix Q to upgrade the reconstruction to a 
metric one can be solved linearly (Tomasi & Kanade, 1992), in the non-rigid case imposing 
the appropriate repetitive structure to the motion matrix M~  results in a non-linear problem. 
It is important to note that while the block structure is not required if we only wish to 
determine image point motion, it is crucial for the recovery of 3-D shape and motion.  
Most of the model-free approaches to non-rigid factorization are based either on closed-
form solutions (Xiao et al., 2004), assuming prior knowledge over the  structure of the basis 
shapes, or iterative non-linear optimisation techniques (Brand, 2005; Del Bue et al., 2007; 
Torresani et al., 2001), which require an appropriate initialisation in order to converge. 

3. The stereo camera case 

The main contribution we present here is to extend the non-rigid factorization methods to 
the case of a stereo rig, where the two cameras remain fixed relative to each other 
throughout the sequence. However, the same framework could be used in the case of 3 or 
more cameras. Torresani et al. (Torresani et al., 2001) first introduced the factorization 
problem for the multiple camera case but they did not provide an algorithm or any 
experimental results. 

3.1 The stereo motion model 

When two cameras are viewing the same scene, the measurement matrix W will contain the 
image measurements from the left and right cameras resulting in a 4F x P  matrix where F is 
the number of frames and P the number of points. Assuming that not only the single-frame 
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tracks but also the stereo correspondences are known we may write the measurement 
matrix W as:  

R

L

W
W

W =  (5) 

where for each frame i the stereo correspondences are: 
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R
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Note that, since we assume that the cameras are synchronized, at each time step i the left 
and right cameras are observing the same 3-D structure and this results in the additional 
constraint that the structure matrix S and the deformation coefficients lid are shared by left 
and right camera. The measurement matrix W can be factored into a motion matrix M and a 
structure matrix S which take the following form:  
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where RL and RR are the rotation components for the left and right cameras.  Once more, we 
have eliminated the translation for both cameras by registering image points to the centroid 
in each frame. Note that the assumption that the deformation coefficients are the same for 
the left and right sequences relies on the fact that the weak perspective scaling f/Zavg must 
be the same for both cameras. This assumption is generally true in a symmetric stereo setup 
where f and Zavg are usually the same for both cameras. 
It is also possible to express the stereo motion matrix M by including explicitly the 
assumption that a fixed stereo rig is being used. In this case the rotation pair for the left and 
right cameras can be expressed in terms of the matrix that encodes their relative orientation 
matrix Rrel such that: RR = Rrel RL. The motion matrix M in equation (6) can be consequently 
expressed as: 
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3.2 Non-rigid stereo factorization 

Once more the rank of the measurement matrix W is at most 3D since M is a 4F x 3D matrix 
and S is a 3D x P matrix, where P is the number of points. Assuming that the single frame 
tracks and the stereo correspondences are all known, the measurement matrix W may be 
factorized into the product of a motion matrix M and a shape matrix S by truncating the 
SVD of W to rank 3D (see section 2.3): 
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3.3 Computing the transformation matrix Q
The result of the factorization is not unique since )

~
)(

~
(=

~ 1SQQMW −  would give an equivalent 
factorization. We proceed to apply the metric constraint by correcting each 4F x 3 vertical 
block in M~  independently. Note that in this case we have used five constraints per frame: 2 
orthogonality constraints (one from each camera) and 3 equal norm constraints (computed 
from rows 2i-1, 2i, 2i+2F-1, 2i+2F of the motion matrix M~  where i is a generic frame). Each 
vertical block will then be corrected as: ddd QMM ~ˆ ← . The overall transformation Q is a 
block diagonal matrix such that: 
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The shape matrix will be corrected with the inverse of the block-diagonal transformation: 
SQS ~ˆ 1−← .

3.4 Factorization of the motion matrix M
In the stereo case we factorize each 4 x 3D sub-block of the motion matrix (which contains 
left and right measurements for each frame i) into its truncated 2 x 3 rotation matrices L

iR
and R

iR  and the deformation weights lid using an orthonormal decomposition. The structure 
of the sub-blocks can be expressed as: 
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The approach used to estimate the rotation components for the left and right cameras use 
the orthogonality constraints on each block of the motion matrix. Since now we have 4 rows 
per frame, we arrange the motion sub-blocks such that: 
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where TL
i

L
i

L
i rrr ][= 61

 is a column vector which contains the coefficients of the left rotation 
matrix L

iR  and similarly for R
ir . Post-multiplying the rearranged matrix Mi by the 2D unity 

vector Tc 1][1=  gives a column vector ai:

cMa ii =  (13) 

which may be rearranged into a 4 x 3 matrix Ai with analytic form:  
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where iDi llk ++1= . Since RL and RR are orthonormal matrices, the following equation is 
satisfied:  
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Therefore, a linear least-squares fit can be obtained for the rotation matrices RL and RR and 
the weights lid can be subsequently estimated by rearranging the sub-block matrix Mi in a 
different way from equation (11):  
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where ( ) ( ) T
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ii rrr = . The configuration weights for each frame i are then derived 

exploiting the orthonormality of Ri since:  
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The linear estimation can be furthermore refined by using a regularization scheme similar to 
the one used by Brand  in his  flexible factorization algorithm (Brand, 2001) which enforces 
the deformations in S~  being as small as possible relative to the mean shape. The idea here is 
that most of the image point motion should be explained by the rigid component. This is 
similar to the shape regularization used by other authors (Torresani et al. 2001; Aanæs & 
Kahl, 2002). 
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So far we have presented an extension of non-rigid factorization methods to the case of a 
stereo camera pair. In particular our algorithm follows the approach by Brand (Brand, 2001). 
While this new method improves the quality of the 3-D reconstructions with respect to those 
using a monocular sequence, it still performs a partial upgrade of the motion and 3-D 
structure matrices since Q is computed initially as a block diagonal matrix and then 
corrected with Brand's  flexible factorization. In order to obtain a solution which completely 
respects the structure of equation (7), we will now describe a non-linear optimization 
scheme which renders the appropriate structure to the motion matrix, allowing to 
disambiguate between the motion and shape parameters. 

4. Stereo non-linear optimization 

4.1 The non-rigid cost function 

The goal is to estimate the motion parameters Ri, the relative orientation between cameras 
Rrel, the 3-D basis shapes Sd and the deformation weights lid such that the distance between 
the measured image points wij and the reprojection of the estimated 3-D points is minimised. 
However, the coordinates in W are extracted by a measurement process and, therefore, they 
are affected by noise or by a certain degree of uncertainty nij. The measured coordinates wij

for the left and right camera at frame i can be expressed in terms of the exact measurements 
xij such that:  

ijijR
ij

L
ij

ij nx
w
w

w +==  (18) 

The projection equation for a 3-D point j in image frame i is given by:  
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where xij are the image coordinates of the point for the left and right cameras and Si is the 
3D x 1 parameterisation of the shape basis for a deformable point j such that:  
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with the 3-vector Sdj defining the d basis component for point j.
Following equation (18), the uncertainty over the measurements is obtained from the 
residual given by nij = wij - xij. This residual is generally referred to as the reprojection error 
of the image coordinates in the literature and it expresses the difference between the image 
coordinates given the estimated model parameters and the measured data. Hence, it is 
possible to recast the problem of estimating the non-rigid structure and motion parameters 
by minimizing the norm of the reprojection error of all the points in all the frames such that:  
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Note that the error is a sum of FP quadratic cost functions. Assuming the noise can be 
modelled with a Gaussian distribution, the minimization of equation (21) provides a true 
Maximum Likelihood (ML) estimate of the parameters. 
The definition of this non-rigid cost function could rise two major criticisms. First, the 
number of parameters can increase dramatically with the number of frames composing the 
scene and the complexity of the modelled object. This may render the minimization of 
equation (21) computationally unfeasible given the size of the parameter space. Second, the 
high non-linearity of the cost function is likely to produce multiple minima which would 
result in a difficult convergence to the global minimum of the function. The solution 
proposed is a reformulation of bundle-adjustment techniques for deformable structure from 
motion which we describe in the following sections. 

4.2 A bundle-adjustment approach to deformable modelling 

The non-linear optimization of the cost function in (21) is achieved using a Levenberg-
Marquardt (Levenberg, 1944; Marquardt 1963; Moré, 1977) iterative minimization scheme 
modified to take advantage of the sparse block structure of the matrices involved. This 
method is generically termed bundle-adjustment in the computer vision (Triggs et al. 2000) 
and photogrammetry (Atkinson, 1996) communities and it is a standard procedure 
successfully applied to numerous 3-D reconstruction tasks (Hartley & Zisserman, 2000). Our 
main contribution here is an analysis of its applicability to the non-rigid modelling 
framework.
In the next section, we will review the concepts involved in bundle-adjustment (Levenberg-
Marquardt minimization and sparse computation) and reformulate the factorization 
framework as a non-linear, large-scale minimization problem. 

4.3 Levenberg-Marquardt minimization 

Levenberg-Marquardt methods use a mixture of Gauss-Newton and gradient descent 
minimization schemes switching from the first to the second when the estimated Hessian of 
the cost function is close to being singular. An algorithm with mixed behaviors usually 
obtains a higher rate of success in finding the correct minimum than other approaches. 
Other similar second-order or quasi-Newton algorithms may be used to minimize the cost 
function. However, Levenberg-Marquardt techniques have been studied and tested 
thoroughly in many Computer Vision applications (Hartley & Zisserman, 2000) and they 
have been found to deliver satisfactory results. Examples are mostly given for classical 
inference problems in Computer Vision such as fundamental matrix computation (Bartoli & 
Sturm, 2004), camera calibration (Pollefeys, 1999), and 3-D sparse reconstruction (Guilbert et 
al., 2004). However second-order methods have been successfully applied to less 
conventional geometric problems such as model-based face reconstruction (Fua, 2000), 
mosaicing (McLauchlan & Jaenicke, 2002)  and reconstruction of curves (Berthilsson, 2001). 
Most of the computational burden of iterative second-order methods is represented by the 
Gauss-Newton descent step, each iteration of which requires the calculation of the inverse of 
the Hessian of the cost function C. Specifically to the deformable factorization case, C can be 
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expressed in terms of the N-vector Θ  containing the model parameters such that 

,,,(= 1 lFl ΘΘΘ T
SPSRFR ),,,,, 11 ΘΘΘΘ , where liΘ , RiΘ  and SjΘ  represent 

respectively the parameters for the configuration weights, orthographic cameras and 3-D 
basis shapes for each view and each point. Hence, the cost function C can be written as a 
sum of squared residuals:  
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where the residual for each frame and each point can be expressed as a 2FP x 1 vector n such 
that TT

FP
T nnn ][= 11

. At each iteration t of the algorithm, an update tΔ  is computed in order 
to descend to the minimum of the cost function such that the new set of parameters is given 
by ttt Δ+ΘΘ + =1 . By dropping the iteration index t for notation clarity, it is necessary to 
express the generic increment Δ  in the model parameters as a second order Taylor 
expansion assuming local linearities in the cost function such that:  

ΔΔ+Δ+Θ≈Δ+Θ HgCC TT
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where nJg T=  is the N x 1 gradient vector and H is the N x N Hessian matrix that can be 
approximated as JJH T=  (Gauss-Newton approximation of the Hessian matrix; see (Triggs 

et al. 2000) for details) with 
Θ∂

∂nJ =  representing the 2FP x N Jacobian matrix in the model 

parameters. In order to find the increment Δ , the minimum of the quadratic function 

ΔΔ+Δ Hge TT

2

1
=  is computed by imposing 0=

Δ∂
∂e . Thus, the expression of the Gauss-

Newton descent step can be finally expressed as:  

gH −Δ =  (24) 

Levenberg-Marquardt algorithms differ from a pure Gauss-Newton method since they 
apply a  damping term to equation (24) obtaining:  

gIH −Δ+ =)( λ  (25) 

The added term Iλ  has a twofold effect in the minimization. Firstly, by modifying the 
parameter λ , it is possible to control the behavior of the algorithm that can switch between 
first order (for high values of λ ) and second order (low λ ) iterations. Secondly, Iλ  makes 
the solution of (17) numerically stable by forcing that IH λ+  is a full-rank matrix and thus 
properly invertible. 

4.4 Sparse structure of the Jacobian 

Solving for the normal equations in equation (22) is a problem of complexity O(N3) and this 
step has to be repeated at each iteration. In order to render the computation feasible as the 
number of parameters increases, it is possible to exploit the sparse structure of the Jacobian 
J. Motion components (configuration weights and camera parameters) are unrelated 
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between different views and, similarly, structure components are unrelated between 
different point trajectories. As a result, the Jacobian matrix contains a large number of 
entries for which the partial derivatives are zero.  
It is possible to solve for the increment Δ  in (25) efficiently by calculating the inverse of H
using the sparse structure of J. Standard approaches for sparse computation are described in  
(Hartley & Zisserman, 2000) and (Triggs et al. 2000). Notice that, again, this property is valid 
for any rigid and non-rigid factorization model, since the sparseness relation is given by the 
independency between motion parameters (for each frame) and 3-D structure (for each 
point) in the multi-view cost function and thus independent of the chosen model. 

4.5 Proposed implementation 

The cost function of a deformable object presents more degrees of freedom than in the rigid 
case, which could lead to the existence of multiple local minima for the motion, deformation 
and structure components. It is possible to reduce the chance of falling into local minima by 
carefully designing the algorithm with respect to the following two aspects: initialisation 
and model parameterisation. 
The camera matrices Ri are parameterised using unit quaternions (Horn 1987) giving a total 
of 4 x F rotation parameters, where F is the total number of frames. Quaternions ensure that 
there are no strong singularities and that the orthonormality of the rotation matrices is 
preserved by merely enforcing the normality of the 4-vector. This would not be the case 
with the Euler angle or the rotation matrix parameterisations, where orthonormality of the 
rotations is more complex to preserve. The quaternion normalization is directly enforced in 
the cost function by dividing the quaternion with its norm. Indeed, in an initial 
implementation the 3-D pose was parameterised using the 6 entries of the rotation matrices 
Ri and Rrel, however the use of quaternions led to improved convergence and to much better 
results for the rotation parameters and the 3-D pose. 
The method proposed by Bar-Itzhack (Bar-Itzhack, 2000) in an attitude control context is 
used to obtain the quaternions from the set of rotation matrices Ri. The algorithm has the 
main advantage of yieldieng the closest quaternion representation if the constraints of 
matrix orthonormality are not exactly satisfied. This eventuality usually appears during the 
initialisation of the non-linear optimization scheme after the first computation of the 
corrective transform Q. Schematically, the method first defines the matrix B given the 
singular elements {rmn} belonging to a generic 3 x 3 rotation matrix Ri:
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The algorithm then follows with the following three steps:   
• Compute the eigenvalues of B.
• Find the largest eigenvalue 

maxλ .
• Extract the eigenvector of B which corresponds to 

maxλ .
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The given eigenvector is the closest quaternion to the matrix R. In the case of an exact 
orthonormal matrix we would obtain 1=maxλ . Finally, the structure is parameterised with 
the (3 x D) x P coordinates of the Sd shape bases and the D x F deformation weights lid.
The linear method proposed in the previous section is used to obtain an initial estimation of 
the model parameters. The initial estimate for the constant relative orientation Rrel between 
the left and right cameras is estimated from the camera matrices RL and RR using a least 
squares estimation.  If the internal and external calibration of the stereo rig were known in 
advance after a process of calibration or self-calibration, an alternative initialisation could be 
computed by recovering the 3-D structure and performing Principal Component Analysis 
(PCA) on the data to obtain an initial estimate for the basis shapes and the coefficients. 
However, our choice was to use an initialisation that does not require a pre-calibration of 
the cameras. 

5. Experimental results 

This section shows the performance of the proposed stereo-motion algorithms. Firstly, 
synthetic stereo sequences are generated under different Gaussian noise and deformation 
conditions to assess the validity of the method. A further synthetic test using a computer 
graphic (CG) generated face model will show the behaviour of the configuration weights 
and motion components when the object in the stereo sequence is static (only deforming). 
We then carry out some real experiments where the object underwent only a small amount 
of rigid motion (apart from the deformations) and we will show the improvement of the 
method by comparing the output of the monocular factorization and the stereo algorithms. 
Non-linear optimization will follow the computed linear solutions. 

5.1 Experiments with a synthetic non-rigid cube 

A set of deformable points is randomly sampled inside a cube of 50 x 50 x 50 units. A 
minimal overall rigid motion is introduced to avoid possible ambiguities arising from a 
completely static object. The 3-D structure computed at each frame is then projected with 2 
orthographic cameras displaced by a baseline of 20 units and relatively rotated by 30 
degrees about the y-axis. Finally, different levels of Gaussian noise (  = 0.5, 1, 1.5, 2) are 
added to the measurements obtained by the stereo pair. Notice that the setup is constructed 
in such way that the overall rigid motion is not enough to reconstruct the sequences using 
monocular factorization followed by bundle adjustment. We performed a test and we 
obtained a relative 3-D reconstruction error of 50% resulting in a meaningless 
reconstruction.
The results show the plots for the relative 3-D error, rotation error and reprojection error 
tested over 25 trials with a 3-D shape deforming with different numbers of basis shapes (see 
Fig. 1) and different degrees of non-rigidity (see Fig. 2) defined as 

nonrigidrigid SSratio = .

Notice in this case a higher reconstruction error of the relative 3-D structure compared to the 
monocular case with higher degrees of deformation. 
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Figure 1. Relative 3-D error (%), r.m.s. rotation error (degrees) and 2-D reprojection error for 
the synthetic experiments with a stereo pair for different basis shapes D = 2 …5 and 
increasing levels of Gaussian noise. The ratio of non rigidity is fixed to 40% for all the trials. 
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Figure 2. Relative 3-D error (%), r.m.s. rotation error (in degrees) and 2-D reprojection error 
for the synthetic experiments for different ratios of deformation (10%, 40%, 80%, 100%) and 
increasing levels of Gaussian noise. 

5.2 Synthetic experiments with a CG generated face 

In this section we have generated a sequence using a synthetic face model originally 
developed by (Parke & Waters, 1996). This is a 3-D model which encodes 18 different 
muscles of the face. Animating the face model to generate facial expressions is achieved by 



Non-rigid Stereo-motion 255

actuating on the different facial muscles. In particular we have used a sequence where the 
head did not perform any rigid motion, only deformations a situation where, clearly, 
monocular algorithms would fail to compute the correct 3-D shape and motion. The 
sequence was 125 frames long. The model deforms between frames 1 and 50, remains static 
and rigid until frame 100 and deforms once again between frames 100 and 125.  

           
Figure 3. Front, side and top views of the 3-D synthetic face for frame 20. The first column 
shows the shape ground truth while the following two columns present the 3-D 
reconstructions for the linear and bundle adjustment algorithms. Deformations are present 
mainly in the mouth region. Notice that the face does not perform rigid motion for the 
whole sequence. 

Figure 4. Front, side and top views of the 3-D synthetic face for frame 70. The first column 
shows the shape ground truth while the following two columns present the 3-D 
reconstructions for the linear and bundle adjustment algorithms. The shape is completely 
static in this frame. 
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Figure 5. Front, side and top views of the 3-D synthetic face for frame 125. The first column 
shows the shape ground truth while the following two columns present the 3-D 
reconstructions for the linear and bundle adjustment algorithms. Deformations are localized 
in the mouth and cheek regions. 

Once the model was generated we projected synthetically 160 points evenly distributed on 
the face, onto a pair of stereo cameras. The geometry of the cameras was such that both 
optical axes were lying on the XZ plane and each pointing inwards by 15 degrees. Therefore 
the relative orientation of the cameras about the Y axis was 30 degrees and 0 about the X and 
Z axes. The camera model used to project the points was a projective model however, the 
viewing conditions were such that the relief of the scene was small compared to the overall 
depth
We show in the following figures the comparisons between three key frames of the synthetic 
sequence providing the 3-D ground truth and the 3-D reconstructions for the linear and 
bundle adjustment algorithms. Fig. 3 presents a deformation localised in the mouth region 
at frame 20. A first visual inspection shows that the result obtained by the bundle 
adjustment has a qualitative advantage over the stereo linear algorithm. While the general 
mean shape is close to the ground truth, only the optimised solution with bundle 
adjustment can model properly the deformations. Frame 70 (see Fig. 4) shows the synthetic 
face (ground truth) with no deformations appearing. The static pose of the shape permits to 
compare the 3-D depth reconstructed by the algorithms. Compared to the ground truth, the 
shape obtained by the stereo algorithm shows a good frontal reconstruction but the 
estimation of the relief is not satisfactory (see side and top views). The non-linear solution 
obtains a depth estimate qualitatively closer to the ground truth. Finally Fig. 5 presents the 
reconstruction obtained for frame 125 where the synthetic face shows consistent 
deformations in the cheeks and mouth area. The stereo algorithm obtains a reasonable mean 
3-D shape but it fails in capturing the deformations appearing in the ground truth. 
Fig. 6 shows the results for the estimated rotation angles and configuration weights before 
and after the non-linear optimization step. The results after bundle adjustment describe 
fairly accurately the geometry of the cameras and the deformation of the face. In particular, 
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the stereo setup was such that there was no rigid motion of the face (only deformation), the 
optical axes of the left and right cameras lay on the XZ plane and the relative rotation of the 
cameras about the Y axis was constant and equal to 30 degrees. In this case we have ground 
truth values for the relative orientation of the cameras since the sequence was generated 
synthetically. Notice how the values obtained for the rotation angles before bundle 
adjustment -- left -- exhibit some problems around frames 10 and 115, when the 
deformations are occurring. After the bundle adjustment step the relative rotation about the 
Y axis is estimated with a final result of 27 degrees resulting in a 3 degrees error given the 
ground truth. The relative orientations about the X and Z axes are correctly estimated to 0 
degrees -- notice that the graphs for the left and right angles are superimposed. 
 Once more, the estimated values for the deformation weights after bundle adjustment have 
larger values than before the optimization. This explains the fact that the model succeeds to 
explain the non-rigid deformations accurately. Interestingly, the coefficients remain constant 
between frames 50 and 110, when no deformations were occurring. 

       (A) STEREO ALGORITHM                                              (B) BUNDLE ADJUSTMENT 
Figure 6. Values obtained for the rigid component (top), deformation weights (middle) and 
rotation angles (bottom) before (A) and after bundle adjustment (B) for the synthetic 
sequence 
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5.3 Experiments with real data: comparison with the monocular solution 

In this section we compare the performance of our stereo factorization algorithm -- before 
the non-linear optimization -- with Brand's single camera non-rigid factorization method. 
We present some experimental results obtained with real image sequences taken with a pair 
of synchronized Fire-i digital cameras with 4,65mm built in lenses. The stereo setup was 
such that the baseline was 20cm and the relative orientation of the cameras was around 30 
degrees. Two sequences of a human face undergoing rigid motion and flexible deformations 
were used: the SMILE sequence (82 frames), where the deformation was due to the subject 
smiling and the EYEBROW (115 frames) sequence where the subject was raising and 
lowering the eyebrows. Fig. 7 shows 3 frames chosen from the sequences taken with the left 
and right cameras. 

         
a) SMILE sequence: left view          b) EYEBROW sequence: left view 

            
c) SMILE sequence: right view           d) EYEBROW sequence: right view 

Figure 7. Three images from the left (a) and right (c) views of the SMILE sequence and left 
(b) and right (d) views of the EYEBROW sequence 

In order to simplify the temporal and stereo matching the subject had some markers placed 
on relevant points of the face such as along the eyebrows, the chin and the lips. A simple 
colour model of the markers using HSV components provided the representation used to 
track each marker throughout the left and right sequences respectively. The stereo matching 
was initialized by hand in the first image pair and then the temporal tracks were used to 
update the stereo matches. 
Fig. 8 shows front, side and top views of the 3-D reconstructions obtained for the SMILE 
sequence. First we applied the single camera factorization algorithm developed by Brand to 
the left and right monocular sequences. We then applied the proposed stereo algorithm to 
the stereo sequence. In all cases the number of tracked points was P=31 and the chosen 
number of basis shapes was heuristically fixed to D=5. 
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a) Left camera   b) Right camera c) Stereo 

Figure 8. SMILE sequence: Front, side and top views (above, middle, bottom) of the 3-D 
model for the a) left camera, b) right camera and c) stereo setup for D=5

     
a) Left camera   b) Right camera c) Stereo 

Figure 9. EYEBROW sequence: Front, side and top views (above, middle, bottom) of the 3-D 
model for the a) left camera, b) right camera and c) stereo setup sequences for D=5
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Frame 16            Frame 58            Frame 81               Frame 16         Frame 58         Frame 81 

(A) STEREO ALGORITHM     (B) BUNDLE ADJUSTMENT 

Figure 10. Front, side and top views of the reconstructed face for the SMILE sequence using 
the stereo algorithm (left) and after bundle adjustment (right). Reconstructions are shown 
for frames 16, 56 and 81 of the sequence 

Fig. 8c shows how the stereo reconstruction provides improved results. The reconstructions 
obtained using singularly the information from the left and right sequences have worse 
depth estimates that can be noticed especially in the side and top views. The reconstructed 
face is strongly asymmetric especially in the mouth region and the points on the forehead 
are almost belonging to a plane. Differently, after merging the data from both sequences in 
the stereo algorithm, we obtained a symmetric shape and a satisfactory curvature of the 
forehead.
Fig. 10(A) shows the front, side and top views of the 3-D reconstructions obtained for frames 
16, 58 and 81 of the SMILE sequence. While the 3-D shape appears to be well reconstructed, 
the deformations are not entirely well modelled. Note how the smile on frame 58 is not well 
captured. This was caused by the final flexible factorization step proposed by Brand. We 
found that while this regularization step is essential to obtain good estimates for the rotation 
parameters it fails to capture the full deformations in the model. This is due to the fact that 
the assumption is that the deformations should be small relative to the mean shape so that 
most of the image motion is explained by the rigid component which results in a poor 
description of the deformations. However, we will see in the following paragraphs that the 
bundle adjustment step resolves the ambiguity between motion and shape parameters and 
succeeds in modelling the non-rigid deformations. 
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Fig. 9 shows the 3-D reconstructions obtained for the EYEBROW sequence. Once more, the 
single camera factorization algorithm was applied to the left and right sequences and the 
stereo algorithm was then applied to the stereo sequence. In this sequence the 3-D model 
obtained using stereo factorization is significantly better than the ones obtained with the left 
and right sequences. In fact, the left and right reconstructions have very poor quality, 
particularly the depth estimates. The points belonging to the nose, mouth and chin are 
almost planar (see side view) while the ones on the forehead have a particularly wrong 
depth estimate (see top view). Note that there was less rigid motion in this sequence and 
therefore the single camera factorization algorithm is not capable of recovering correct 3-D 
information whereas the stereo algorithm provides a good deformable model. 

5.4 Experiments with real data: results after non-linear optimization 

In this section we show the results obtained after the final non-linear optimization step. Fig. 
10(B) shows the front, side and top views of the 3-D reconstructions before and after the 
bundle adjustment step for three frames of the SMILE sequence. The initial estimate is 
shown on the left and the results after bundle adjustment are shown on the right. While the 
initial estimate recovers the correct 3-D shape, the deformations on the face are not well 
modelled. However, bundle adjustment succeeds to capture the flexible structure -- notice 
how the upper lip is curved first and then straightened. 
Fig. 11 shows the results obtained for the estimated motion parameters and configuration 
weights using the initial stereo factorization method and the improved results after bundle 
adjustment. The bottom graphs show the rotation angles about the X, Y and Z axes 
recovered for each frame of the sequence for the left and right cameras (up to an overall 
rotation). The recovered angles for the left and right camera after bundle adjustment reflect 
very well the geometry of the stereo camera setup. This was such that both optical axes lay 
approximately on the XZ plane -- therefore there was no relative rotation between the 
cameras about the X and Z axes -- and the relative rotation about the Y axis was about 15 
degrees. Note that these values are not ground truth and only approximate as they were not 
measured accurately. Also note that the rotation matrices for the right camera are calculated 
as RR= Rrel RL where Rrel  is the estimated relative orientation.  Fig. 11(B) shows how the 
estimates of the rotations about the X and Z axes (in blue and green) for the left and right 
views are close to being zero. The relative rotation between left and right cameras about the 
Y axis (in red) is closer to 15 degrees after bundle adjustment than before. 
Fig. 11 also shows the evolution throughout the sequence of the values of the configuration 
weights associated with the mean component (top) and the 4 modes of deformation 
(middle). The values appear to be larger after bundle adjustment confirming that the non-
linear optimization step has achieved to model the deformations of the face. It is also 
interesting to note how the first mode of deformation experiences a big change starting 
around frame 40 until frame 75. This coincides with the moment where the subject started 
and finished the smile expression. 
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    (A) STEREO ALGORITHM        (B) BUNDLE ADJUSTMENT 
Figure 11. Values obtained for the rigid component (top), deformation weights (middle) and 
rotation angles (bottom) before (A) and after bundle adjustment (B) for the SMILE sequence 

6. Summary 

A stereo-motion approach has been presented with the aim to reconstruct the 3-D shape of a 
deformable object using image sequences extracted from a stereo-pair. As a result, the non-
rigid factorization framework has been accordingly updated to accommodate the constraint 
that trajectories in the left and right camera refer to the same 3-D object. 
By construction, the method fuses naturally the advantages of motion and stereo 
approaches. A global solution for the time varying motion and 3-D structure is obtained 
from the image tracks without any prior calibration of the stereo pairs. Widely separated 
stereo views allow a more reliable estimation of motion and deformation parameters even in 
the absence of rigid motion of the object. 
Additionally, non-linear optimization, as presented in the previous chapter, is performed to 
obtain the correct replicated structure in M. Results show a relevant improvement in the 
motion and structure estimates and thus the optimization stage is strongly recommended to 
obtain a correct solution. 
The main assumption of our method is that the cameras must be synchronized and stereo 
matches be available. Synchronization can be enforced using the method presented in 
(Tresadern & Reid, 2003) but nowadays it is common to obtain synchronized video from 
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stereo cameras. Stereo matching could be tackled by extending current techniques (Ho & 
Chung, 2000; Oliveira et al., 2005} to deal with the non-rigid case. 
Finally, notice that the solution for a stereo pair is trivially extendable to the case of multiple 
cameras both for the linear and non-linear approach. Moreover, the constraint over the fix 
baseline can be loosened to permit freely moving cameras; in this case the stereo-motion 
model needs to include parameters for the weak perspective scaling for each camera. This 
will allow to solve for a general multi camera system modelling non-rigid shapes from 
uncalibrated data. 
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1. Introduction   

A fundamental (and popular) task in computer and robot vision is the tracking of an object 
which moves relative to the camera, essentially segmenting the object region of each 
successive frame. There are a great many published approaches, which are often variations, 
combinations or advances on well known techniques such as background subtraction, image 
differencing, predictive filtering and Bayesian estimation. Generally, these techniques rely 
on simple models of the tracked object and/or models of the background. 
Many techniques in computer vision derive from ideas previously established in the pattern 
recognition community, where it is usual to learn models offline from historical training 
data sets. Hence these models, once learned, typically remain static during the online 
tracking process. 
Such static models are ultimately of limited robustness in real world computer vision 
tracking scenarios where the appearance of both the background and the tracked object may 
change significantly and frequently due to camera motion (resulting in background change), 
object motion or deformation, introduction and removal of additional objects and clutter 
(e.g. passing traffic on a road) and changes in lighting and visibility conditions (either 
changes in ambient conditions or, for example, spotlights mounted on and moving with an 
underwater robot). 
In contrast, this chapter will discuss a variety of tracking algorithms and techniques which 
are highly adaptable. These techniques have in common that they incorporate models which 
are continuously relearned from new input image frames while simultaneously performing 
tracking on those frames. 
These techniques are powerful, in that they offer a way of successfully adapting to a 
changing environment. However, the price paid for adaptability can be a tendency towards 
certain kinds of instability. In simple terms, any system that continuously relearns (e.g. 
models of the tracked object and the background), has a risk of relearning incorrectly (e.g. 
relearning that background looks like object). Therefore, this chapter will also discuss 
various techniques for automatically detecting and correcting such errors as they occur, and 
survey techniques by which algorithms might continuously monitor their own performance. 
It is also useful to consider continuous machine learning techniques in vision in terms of the 
rate of relearning. Firstly we will consider well established algorithms which incrementally 
re-learn models, very gradually, over many frames. Later we will look at very recent work, 
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in which models are entirely relearned at every frame or even several times during an 
iterative analysis of each frame. We will see that this re-learning rate often has implications 
for the trade off between the capacity of an algorithm to adapt and its inherent stability. 

2. Adaptive background subtraction with a stationary camera 

2.1 Relearning simple uni-modal background models 

If the camera is fixed (e.g. in visual surveillance applications), and the tracked object is also 
moving, the simple but powerful technique of background subtraction can be employed in 
order to segment the image region representing the tracked object of interest. Typically, this 
involves thresholding the difference between the current image and a historical model of 
what the image looked like before any objects of interest were present. In its simplest form, 
this relies on the assumption that background pixel values remain constant. While this 
assumption can be effective for short term tracking in indoor environments with fixed 
lighting, it fails in longer term use in changing environments, especially for outdoor scenes 
which involve lighting and shadow changes, repetitive motion of clutter or slowly acting 
long-term changes to the scene. Thus it becomes desirable to enable the background model 
to gradually be re-learned. 
A simple approach (Kanade et al., 1998, Collins et al., 1999) involves, essentially, modelling 
each background pixel intensity as a weighted moving average of recent pixel values. At the 
tth video frame, the grey-scale intensity, ijI , of each pixel, ( )ji, , is examined. If it is 

determined that this pixel represents background then the background model intensity, ijB ,
for that pixel is updated as: 

( ) t
ij

t
ij

t
ij IBB αα −+=+ 11   (1) 

otherwise the background model for that pixel is left unchanged. Classification of each pixel 
is determined by thresholding the difference between its intensity and that of the current 
background model, i.e. the pixel is classified as foreground if: 

t
ij

t
ijij TBI >−  (2) 

Each pixel is assigned its own individual threshold, t
ijT , which can itself be updated to take 

account of increases or decreases in the amount of temporal variation of background 
intensity. If a pixel is classified as background, then its threshold is updated as: 

( )( )t
ij

t
ij

t
ij

t
ij BITT −×−+=+ βαα 11   (3) 

i.e., the threshold for classifying foreground pixels is increased if the variation of 
background intensity from frame to frame increases and is decreased as this temporal 
variation decreases. Thus the threshold, t

ijT , is analagous to β  times the local temporal 
standard deviation of intensity. This process effectively moderates the fundamental tradeoff 
between false positives (erroneously classifying background pixels as foreground due to the 
threshold being too low) and false negatives (erroneously classifying foreground pixels as 
background because the threshold is set too high). 
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2.2 Relearning multi-modal background models 

The above method is useful in that it continuously adapts to a (slowly) varying background 
scene. However, the simple uni-modal model cannot adequately account for the multi-
modality that typically occurs in background pixels of real scenes, even when the camera is 
stationary. As an example, consider a fixed surveillance camera where a small part of the 
image views the branch of a tree. As the tree (or even the camera mounting) sways in the 
wind, a particular pixel colour might vary between blue (sky) and brown (tree branch). In 
such a situation we might wish for a bi-modal background model which can represent both 
of these common pixel values. A tri-modal model might further enable us to handle scenes 
in which background pixels typically represented tree branch, blue sky, or grey cloudy sky. 
Such multi-modal background variation occurs for myriad reasons, e.g. reflections from a 
rippling water surface in an outdoor scene or computer monitor flicker in an indoor office 
environment.
A continuosly relearnable model, which both addresses the multi-modality in background 
pixels and also adapts itself to temporal background changes, was first developed by 
Grimson and Stauffer (Grimson et al., 1998, Stauffer and Grimson, 1999, Grimson et al., 
2000). Grimson models the recent history of each pixel colour (e.g. rgb value) over the 
previous t frames, { }10 ,..., −tCC , as a mixture of K Gaussian distributions. The probability of 
observing the current pixel colour is: 

( ) ( )1,1,

1

1, ,, −−
=

−= tktkt

K

k
tkt NP μCC ω   (4) 

where tk ,ω is a weight (that portion of the data which is represented by this Gaussian) of the 

kth of K Gaussians at time t, tk ,μ  and tk ,  are the means and covariance matrices 

respectively and N denotes the Gaussian probability density function. At each frame, every 
new pixel value is checked against the K Gaussians and assigned to the best match. If none 
of them match (e.g. the pixel does not lie within 2 standard deviations of any Gaussian) then 
the least probable Gaussian is removed and replaced with a new Gaussian having the 
current value as its mean, a high initial variance and a small weight. 
Now the weights of all K Gaussians are updated as: 
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After this update the weights are all re-normalized. α  determines the rate at which the 
background model is relearned and has important consequences which we will discuss in 
more detail later. The weights, tk ,ω , could be thought of as prior probabilities of each kind 
of background mode (e.g. the tree branch or the sky). Analagous with recursive Bayesian 
filtering, this prior has, in effect, been approximated as a weighted average of the previous 
posterior probabilities, with exponentially decaying  emphasis on past values. 

if the new pixel belongs to 
the kth Gaussian 

otherwise
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Grimson also seeks to adaptively relearn the means and variances of each Gaussian in the 
mixture. A simplifying (though usually untrue) approximation is to assume that red, blue 
and green components of each pixel are independent and share similar variances, i.e.: 

I2
,, tktki σ=   (6) 

Values of tk ,μ  and 2
,tkσ  for those Gaussians which do not match the current pixel value 

remain unadjusted. Values of tk ,μ  and 2
,tkσ  for the Gaussian to which the new pixel value 

does belong are updated as follows: 

( ) ttt Cμμ ββ +−= −11  (7) 

( ) ( ) ( )tt
T

tttt μCμC −−+−= − βσβσ 2
1

2 1  (8) 

The second learning rate, β , is simply the overall learning rate, α , weighted by the 
probability that the observed pixel value truly belongs to the Gaussian being modified, i.e.: 

( )kktN μC ,,αβ =   (9) 

To determine the background model for each pixel individually, all K Gaussians for that 
pixel are ordered on the basis of 2

kk σω . This is a heuristic that assigns importance to 
modes which are both frequent and consistent (have a small variance). Once the Gaussians 
have been ordered in importance, the first B distributions are selected that account for a 
predefiend fraction, F, of observations, i.e.: 
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Now, any new pixel which is more than 2 standard deviations from the means of all of the B
background distributions is classified as part of a foreground moving object. 
Grimson and Stauffer’s method provides a relatively sophisticated description of the 
background, which can be continuously relearned to enable powerful adaption capabilities 
for slowly changing scenes. A significant advantage of the method is that new 
characteristics of the background can be acquired without destroying the existing model. 
Statistically important colours will remain in the model until they become the Kth most 
probable mode and a new colour is observed. This enables for example, the background 
model to cope robustly with objects that move into the scene, temporarily stop, and then 
move on. Even if the stationary vehicle has temporarily been incorporated into the 
background model, it will quickly be removed again once it recomences motion. 

2.3 Relearning non-parametric background models 

Elgammal et al., 1999, suggest an alternative model for relearning backgrounds with a 
stationary camera. Grimson and Stauffer’s mixture model approach builds a background 
model very slowly over a large number of image frames. This is unable to respond 
sufficiently sensitively to higher frequency background variations. To address this difficulty, 
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Elgammal et al. use a different kind of model that can be completely relearned over a much 
smaller, recent set of frames (good results are reported with 100 frames). 
Given the colours of a pixel over the previous t frames, { }10 ,..., −tCC , the probability density 

that this pixel will have rgb colour ( )Tttt
t CCC 321 ,,=C  in the current frame can be non-

parametrically estimated using a kernel estimator, K, as: 
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The kernel estimator function, K, is typically chosen to be a Normal function, ( ),0N ,
giving the density in terms of the multivariate Normal distribution: 
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As with grimson’s work, a simplifying approximation is to assume independence between 
the r,g and b colour values of the pixel so that: 
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conveniently reducing the density estimation to: 
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This pixel is now labelled as foreground if ( ) Tp t <C , where T is a global threshold for the 

whole image. To estimate the variances for each colour, 2
jσ , the median, mj, is computed of 

the deviations between each successive pair of values in the sample, e.g. the median, mj, of 
1−− n

j
n
j CC  for each consecutive pair of the previours 100 frames. Now each standard 

deviation is estimated as: 

268.0

m
j =σ  (15) 

2.4 Relearning rate 

The background subtraction methods described so far are unable to detect objects which 
move slower than a critical “re-learning speed” since the object itself would simply become 
re-learned as background. Therefore there is a fundamental trade off in the choice of 
learning rate. It must be rapid enough to cope with the fastest anticipated background 
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change but slow enough to enable the most slowly moving objects to be detected. Thus two 
kinds of error must be considered when choosing an appropriate learning rate. Failing to 
relearn rapidly enough causes rapidly changing background pixels to be falsely detected as 
object (false positive). Failure to relearn slowly enough causes slow moving objects to pass 
undetected (false negative). In the extreme case, without the use of additional techniques, 
tracking based simply on background subtraction will eventually lose the tracked object if it 
stops moving since it will become incorporated into the relearned background model. 
As an example of the complexity of these tradeoffs, Elgammal’s model is able to adapt 
rapidly to background changes which would cause false positive detections with Grimson 
and Stauffer’s method. However, Grimson and Stauffer’s method is able to learn new 
background features without destroying its existing model. In contrast Elgammal’s model is 
unable to remember background data from longer ago than 100 frames (or whatever length 
of frame history is chosen). Elgammal goes a certain way to overcoming this trade off by 
incorporating a procedure for combining both a short-term and long-term background 
model which are each updated over different timescales. 
Since all of the methods so far described, including the faster responding non-parametric 
method, involve relatively slow relearning over many frames, they are all unable to cope 
with the rapidly changing backgrounds that result from a moving camera. The following 
sections describe recent work, in which rapid changes due to camera motion can be handled 
by a very different approach which enables the background to be completely relearned with 
every new frame. 

3. The ABCshift algorithm – adapting backgrounds with a moving camera 

3.1 Bayesian mean shift tracking with static colour models 

The CAMSHIFT tracker (Bradski, 1998a, 1998b) is a colour based tracking algorithm which 
is popular for its elegant simplicity and speed. The qualities of speed and simplicity would 
suggest useful applications to mobile robot vision or wide area surveillance tasks which 
necessitate moving cameras. Unfortunately, CAMSHIFT was originally designed by Bradski 
for face tracking at close range from a stationary camera in relatively simple indoor 
environments. It often fails if the camera moves, because it relies on static models of both the 
background and the tracked object. 
For each frame of an image sequence, the CAMSHIFT algorithm looks at pixels which lie 
within a subset of the image defined by a search window (green box in figures 1-5). Each 
pixel in this window is assigned a probability that it belongs to the tracked object, creating a 
2D distribution of object location over a local area of the image. The centroid of this 
distribution can be regarded as the probabilistic expectation of the true object position, and 
thus provides an improved object position estimate. The search window is now repositioned 
at this centroid and the process is iterated until convergence. Since this iterative shift 
towards the mean (expectation) position is an example of the mean shift procedure 
(Comaniciu, 2002, 2003), Bradski’s algorithm is known as the “Continuously Adaptive Mean 
Shift” or CAMSHIFT tracker. However, Bradski’s use of the term “adaptive” is not the same 
as that of this chapter and does not imply any continuous machine learning. CAMSHIFT is 
only “adaptive” in the sense that the tracked object size is re-estimated at each frame to 
indicate whether the object is moving towards or away from the camera. 
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The size of the tracked object region (in pixels) is estimated by summing the probabilities of 
all the pixels within the search window. The object region can now be indicated by marking 
out a simple area of this size around the object centroid (the red box in figures 1-5). The 
search window is now resized so that its area is always in a fixed ratio to this estimated 
object area. 
The tracked object is modeled as a class conditional colour distribution, ( )O|P C . Depending 
on the application, 1D Hue, 3D normalised RGB, 2D normalised RG, UV or ab histograms 
may all be appropriate choices of colour model, the important point being that these are all 
distributions which return a probability for any pixel colour, given that the pixel represents 
the tracked object. These object distributions can be learned offline from training images, or 
during initialisation, e.g. from an area which has been user designated as object in the first 
image of the sequence. 
The object location probabilities can now be computed for each pixel using Bayes' law as: 

( ) ( ) ( )
( )C

C
C

P

P|P
|P

OOO =  (16) 

where ( )C|P O  denotes the probability that the pixel represents the tracked object given its 

colour, ( )O|P C  is the colour model learned for the tracked object and ( )OP  and ( )CP  are 

the prior probabilities that the pixel represents object and posesses the colour, C ,
respectively.
The denominator of equation (16) can be expanded as: 

( ) ( ) ( ) ( ) ( )BBOO P|PP|PP CCC +=  (17) 

where ( )BP  denotes the prior probability that the pixel represents background. 
Bradski recommends values of 0.5 for both ( )OP  and ( )BP . However, this choice is difficult 
to justify if one takes these terms to denote the expected fractions of the total search window 
area containing object and background pixels respectively. It seems preferable to assign 
values to object priors in proportion to their expected image areas. If the search window 
area is always resized to be r  times bigger than the estimated tracked object area, then ( )OP

is assigned the value r1 and ( )BP  is assigned the value ( ) rr 1− .

The colour histograms, ( )O|P C  and ( )B|P C , are the class conditional object and 
background models respectively. As for the object model, Bradski also suggests learning the 
background model offline, presumably building a static ( )B|P C  histogram from an initial 
image. While it is often reasonable to maintain a static distribution for the tracked object 
(since objects are not expected to change colour), a static background model is unrealistic 
when the camera moves. The CAMSHIFT algorithm can rapidly fail when the background 
scenery changes since colours may exist in the new scene which did not exist in the original 
distribution, such that the expressions in Bayes law will no longer hold true and calculated 
probabilities no longer add up to unity. 
Particular problems arise with CAMSHIFT if the tracked object moves across a region of 
background with which it shares a significant colour. Now a large region of background 
may easily become mistaken for the object, figure 1. 
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3.2 Incorporating an adaptive background model 

Recent work (Stolkin et al. 2006) addresses these problems by using a background model 
which can be continuously relearned. An interesting aspect of the work is that, in contrast to 
Grimson and Stauffer’s mixture model representation (section 2.2), this model can be 
relearned without the need to decisively classify pixels as being object or background. Due 
to the continuously relearnable background model, Stolkin et al. have named this tracker the 
ABCshift (Adaptive Background CAMSHIFT) algorithm. 
Rather than using an explicit ( )B|P C histogram, Stolkin et al. build a ( )CP histogram which 
is recomputed every time the search window is moved, based on all of the pixels which lie 
within the current search window. ( )CP  values, looked up in this continuously relearned 
histogram, can now be substituted as the denominator for the Bayes' law expression of 
equation 16. Since the object distribution, ( )O|P C , remains static throughout the tracking, 
this process becomes equivalent to implicitly relearning the background distribution, 

( )B|P C , because ( )CP  is composed of a weighted combination of both these distributions 

(see equation 17). Relearning the whole of ( )CP , rather than explicitly relearning ( )B|P C ,
avoids the need to make hard decisions about the class of any particular pixel and helps 
ensure that probabilities add up to unity,e.g. if there are small errors in the static object 
model, ( )O|P C .
Adaptively relearning the background distribution helps prevent tracking failure when the 
background scene changes, particularly useful when tracking from a moving camera 
(figures 1-4). Additionally, it enables objects to be tracked, even when they move across 
regions of background which are the same colour as a significant portion of the object, 
(figure 1-4). This is because, once ( )CP has been relearned, the denominator of Bayes' law 
(equation 16) ensures that the importance of this colour will be diminished. In other words, 
the tracker will adaptively learn to ignore object colours which are similar to the 
background and instead tend to focus on those colours of the object which are most 
dissimilar to whatever background is currently in view. 
It is interesting to note that the continual relearning of the ( )CP histogram need not 
substantially increase computational expense. Once the histogram has been learned for the 
first image it is only necessary to remove from the histogram those pixels which have left 
the search window area, and add in those pixels which have newly been encompassed by 
the search window as it shifts with each iteration. Provided the object motion is reasonably 
slow relative to the camera frame rate, the search window motion will be small, so that at 
each iteration only a few lines of pixels need be removed from and added to the ( )CP

histogram. 
If the ( )CP  histogram is relearned only once every frame, the speed should be similar to that 
of CAMSHIFT. However, if the histogram is relearned at every iteration, some additional 
computational expense is incurred, since to properly exploit the new information it is 
necessary to recompute the ( )C|P O  values for every pixel, including those already analysed 

in previous iterations. In contrast, with the CAMSHIFT algorithm, ( )C|P O  values only ever 
need to be computed once for any pixel. Theoretically, updating at each iteration should 
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produce more reliable tracking, although good tracking results are observed with both 
options.

Figure 1. A simple blue and red chequered object, moving from a region of white 
background into a region of red background. CAMSHIFT fails as soon as the object moves 
against a background with which it shares a common colour. Frames 350, 360, 380, 400, and 
450 shown. Green and red squares indicate the search window and estimated object size 
respectively. This movie, RedWhite1CAMSHIFT.avi, can be viewed at the project website 
(see references).

Figure 2. ABCshift tracks successfully. Frames 350, 360, 380, 400, and 450 shown. Green and 
red squares indicate the search window and estimated object size respectively. This movie, 
RedWhite1ABCshift.avi, can be viewed at the project website (see references).

Figure 3. Person tracking with CAMSHIFT from a moving camera in a cluttered, outdoors 
environment. Frames 1, 176, 735, 1631 and 1862 shown. Since the tracked person wears a red 
shirt, CAMSHIFT tends to fixate on red regions of background, including brick walls and 
doors, and repeatedly loses the tracked person. Green and red squares indicate the search 
window and estimated object size respectively. This movie, PeopleTracking1CAMSHIFT.avi 
can be viewed at the project website (see references).

Figure 4. ABCshift successfully tracks throughout the sequence and is not distracted by red 
regions of background, despite being initialised in image 1 which contains no red 
background. Frames 1, 176, 735, 1631, and 1862 shown. Green and red squares indicate the 
search window and estimated object size respectively. This movie, 
PeopleTracking1ABCshift.avi, can be viewed at the project website (see references).

In practice, ABCshift may often run significantly faster than CAMSHIFT. Firstly, the poor 
background model can cause CAMSHIFT to need more iterations to converge. Secondly, the 
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less accurate tracking of CAMSHIFT causes it to automatically grow a larger search window 
area, so that far greater numbers of pixels must be handled in each calculation.

3.3 Summary of the ABCshift tracker 

The key difference between ABCshift and the conventional CAMSHIFT tracker is that 
CAMSHIFT uses a simple, static background model that is typically initialized from the first 
frame and then remains constant throughout the duration of the tracking. In contrast, 
ABCshift is able to completely relearn the background at every frame or even many times 
per frame, with little additional computational cost. 
The ABCshift algorithm is summarized as: 
1. Identify an object region in the first image and train the object model, ( )O|P C .
2. Center the search window on the estimated object centroid and resize it to have an area 

r times greater than the estimated object size 
3. Learn the colour distribution, ( )CP , by building a histogram of the colours of all pixels 

within the search window. 
4. Use Bayes' law (equation 16) to assign object probabilities, ( )C|P O , to every pixel in the 

search window, creating a 2D distribution of object location. 
5. Estimate the new object position as the centroid of this distribution and estimate the 

new object size (in pixels) as the sum of all pixel probabilities within the search 
window.

6. Repeat steps 2-5 until the object position estimate converges. 
7. Return to step 2 for the next image frame. 

4. Algorithms that detect and correct their own errors 

4.1 Automatic online performance evaluation 

Förstner, 1996, suggests that: 
1. Vision systems should contain tools for self diagnosis and be able to estimate their own 

performance.
2. Vision systems should know their own limitations, detect their own cases of failure and 

be able to report failures and possible causes. 
3. To enable such self diagnosis, quality measures need to be determined and specified for 

both algorithm inputs and outputs. 
There seem to be two fundamental mechanisms by which a vision algorithm might 
determine when it is (or is likely to be) failing or performing sub-optimally. These can 
broadly be divided into techniques that examine the algorithm’s inputs and those that 
examine its outputs. Firstly, it might be possible to test the kinds of tracking conditions 
under which a particular algorithm tends to fail. By comparing these with the current input 
data to the algorithm during tracking, it might be possible to infer when imminent failure or 
poor performance is likely. Secondly, it may be possible to apply quality measures to output 
features of the algorithm such as characteristics of an estimated trajectory or a learned 
representation of the tracked object. The first strategy is difficult since it would require an 
extensive survey of the performance of an algorithm on a large number of image sequences, 
under many conditions, as well as some way of characterizing and comparing the 
conditions, i.e. some metrics which summarise the nature of any input video sequence. This 
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approach is theoretical and, to the best of the author’s knowledge has not so far been 
attempted. Therefore, this section briefly examines some simple techniques that attempt to 
implement the second of these strategies. 
There are two reasons for including this material in the chapter. The concept of algorithms 
which continuously monitor their own performance and recognise and correct their own 
errors, seems intuitively to be closely related to the principals of continuous machine 
learning and autonomous adaptability which are the subject of this discussion. Additionally, 
these techniques are particularly useful to help correct certain kinds of instability, which 
occasionally result from continuous model relearning. Simplistically, if an algorithm is 
allowed to continuously relearn without supervision, there is always a danger that it will 
learn incorrectly (e.g. learning that background looks like object). Once this process begins 
and is left uncorrected, it can sometimes escallate, creating an unstable feedback situation 
which results in failure. This is a previously underexplored area of research. The intention of 
this section is to highlight some examples and suggest a few possible research directions in 
the hopes of stimulating further interest within the vision community. 

4.2 Bhattacharyya resizing 

The ABCshift algorithm is powerful, in that it can cope with rapidly changing backgrounds 
due to camera motion, by completely relearning a background model at every frame. 
However, this continual relearning itself can introduce a special mode of instability which 
occasionally causes problems. If the search window should shrink (due to the object region 
being temporarily underestimated in size) to such an extent that the boundaries of the 
search window approach the boundaries of the true object region, then the background 
model will be retrained predominantly using object pixels. This in turn will lead to many 
object pixels being assigned a high probability of belonging to the background and even 
more object pixels beome incoporated into the background model. Thus the estimated object 
region shrinks in size with a corresponding shrinking of the search window. This results in 
an unstable feedback cycle with the estimated object region and search window gradually 
(and unrecoverably) collapsing. 
Stolkin et al., 2007, solve this problem by noting that, as the search window shrinks and 
approaches the size of the object region, the learned search window distribution, ( )CP , must 

become increasingly similar to the static distribution known for the tracked object, ( )O|P C .
If this increasing similarity can be detected, then both the object region and search window 
can be easily resized, see figure 5, the correct enlargement factor being r , the desired ratio 
of search window size to object region size. 
Several statistical measures exist for comparing the similarity of two histograms. Stolkin et 
al. utilise a Bhattacharyya metric (Bhattacharyya, 1943) sometimes referred to as Jeffreys-
Matsusita distance (Jeffreys, 1946) which for two histograms, { } { }Kiipp

,...2,1∈=  and 

{ } { }Kiiqq
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( ) ( )
=

−=
K

i
ii qpqpd

1

2

,  (18) 



Scene Reconstruction, Pose Estimation and Tracking 276

20 ≤≤ d . Note that this metric can easily be shown to be the same, modulo a factor of 

2 as that referred to elsewhere in the literature (Comaniciu, 2002, 2003, Perez, 2002, 
Numiaro, 2002). 
At each iteration of the ABCshift algorithm, Stolkin et al., 2007, evaluate the Bhattacharyya 
metric between the static object distribution, ( )O|P C , and the continuously relearned search 

window distribution, ( )CP  (which implicitly encodes the background distirbution, ( )B|P C .
If the Bhattacharyya metric approaches zero, it is inferred that the search window is 
approaching the true object region size while the estimated object region is collapsing. Both 
windows are therefore resized by the factor r . In practice it seems useful to resize when the 
Bhattacharyya metric drops below a preset threshold. Useful threshold values typically lie 
between 0.2 and 0.7. 
Note that, because of the special way that ABCshift implicitly relearns the background by 
relearning the ( )CP  histogram, the Bhattacharyya metric is used to compare this histogram 

with the object model, ( )O|P C . In other kinds of algorithm, where the literal background 
distribution itself is available, it would be equally advantageous to measure the 
Bhattacharyya metric betwen ( )O|P C  and ( )B|P C .
This is an unusual application of the Bhattacharyya metric. It has previously become 
common in the vision literature (Comaniciu, 2002, 2003, Perez, 2002, Numiaro, 2002) to use 
this metric to evaluate the similarity between a candidate image region and an object 
distribution for tracking (i.e. comparing potential object with known object). In contrast, 
Stolkin et al., 2007, use the metric to compare an object distribution with a background 
distribution, inferring an error if the two begin to converge. 

Figure 5. Bhattacharyya resizing. A simple red and blue checkered object is tracked across 
red, white and blue background regions by the ABCshift tracker, augmented with 
Bhattacharyya resizing. Frames 180, 200, 205, 206 shown. Due to rapid, jerky motion from 
frames 180 to 205, the search window has shrunk until it falls within the object region, 
risking relearning that background looks like object. ABCshift has detected this instability 
using the Bhattacharyya metric, and automatically corrects the estimated object region and 
search window size in frame 206. Green and red squares indicate the search window and 
estimated object size respectively. This movie, PeopleTracking1ABCshift.avi, can be viewed 
at the project website (see references).

4.3 Other kinds of online auto-performance evaluation 

Other related work includes Correia and Pereira, 2002, 2003, and Erdem et al., 2004. This 
work is not explicitly concerned with the concept of algorithms that constantly monitor their 
own performance during tracking. However the techniques are applicable, since the authors 
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are broadly interested in performance evaluation without the need for ground truth data 
(which can be very difficult to generate, see Stolkin, 2006). Erdem divides these performance 
metrics, which could be used to auto-evaluate tracking performance online (without any 
external ground-truth data), into two classes as intra-object homogeneity and inter-object 
disparity, i.e. the tracked object should be consistent with itself but different from the 
background or other objects. 
Intra-object homogeneity metrics might examine shape regularity, spatial uniformity, 
temporal stability and motion uniformity. The Bhattacharyya resizing technique described 
above is similar to inter-object disparity metrics, which evaluate colour or motion contrast 
between pixels, labelled as lying inside and outside the tracked object. 
For tracking schemes which output a detailed segmentation of the tracked object, Erdem et 
al. suggest evaluating spatial colour contrast along object boundaries. Pairs of pixels are 
selected which lie slightly inside and outside the boundary of the estimated segmented 
object region.  Then colour differences are evaluated along the object boundary. If the 
tracking algorithm enables a colour histogram of the tracked object to be re-calculated at 
each frame (e.g. by defining a segmented object region or by relearning a colour model), 
then this histogram can be compared with a smoothed or average histogram from several 
previous frames, to measure temporal consistency. It is also possible to evaluate the 
differences in motion vectors of points estimated to lie inside and outside the tracked object. 
In the author’s opinion, the use of such techniques, even in very simple ways, to enable 
tracking algorithms to detect their own errors or modify their parameters in response to 
deteriorating performance has so far received very little attention, and this would seem to be 
a useful and open area of ongoing research.

5. Continuously adaptive models of the tracked object 

So far, this chapter has provided an overview of various examples of continuous machine 
learning in the context of background models which adapt with time. Adaptive tracking 
research predominantly focuses on dynamic relearning of background models, rather than 
foreground models, because it is often reasonable to assume that the appearance (e.g. colour 
distribution or texture) of a tracked object remains relatively constant during the tracking 
process. This section will examine the possibilities for creating algorithms with the 
additional capabilities of adapting to changes in the tracked object. 
Might it be possible to create a simple colour based blob tracker which can track a 
chameleon? Or how about tracking a person who, while strolling down the street, pulls off a 
red jacket to reveal a yellow shirt underneath (or Clark Kent as he changes into Superman 
on the fly)? At present, these kinds of problems (or the similar problem of tracking 
“camouflaged” objects) tend to be approached with contour tracking, e.g. the ConDensation 
algorithm (Isard and Blake, 1996), but might fast and simple algorithms such as Mean Shift 
Tracking (Comaniciu et al., 2003)  or ABCshift (Stolkin et al., 2007) be modified to handle 
these tasks by continuously relearning the appearance of the tracked object? 
Let us consider the case of region based object tracking with representations of objects in the 
form of distributions of intensity, colour or other simple features. In order to update such 
distributions based on the intensities of pixels in each new frame, some decision must be 
made about whether or not each new pixel belongs to the tracked object. Note that ABCshift 
successfully adapts to a changing background without any explicit classification of 
background pixels, but this is enabled by the assumption of a static object model, combined 
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with some cunning manipulation of Bayes’ law. It is relatively easy to update a background 
model given a static object model and presumably vice versa, but it is much less obvious 
how to mutually refine both models at the same time. A method is needed by which entirely 
new colours, which previously did not exist in the object at all, could still be acquired by the 
object model as they appear. It does not seem logically feasible to manage this without 
fitting some kind of boundary or contour around the tracked object region at each frame. 

Figure 6. Possible mechanism for object model relearning. Firstly the old object model (e.g. 
colour distribution) is used to classify new image pixels as object. Next a boundary is fitted 
around these pixels, defining the object region. Finally all pixels within the object region are 
relearned as the new object model. 

A simple theoretical example of such a scheme is illustrated in figure 6. If the object model is 
a class conditional intensity or colour distribution, then pixels in the current image, with 
high probabilities according to the existing model, can be identified as belonging to the 
object. Some object pixels are missed, since the object appearance has changed somewhat 
since the previous image and the current model is out of date. Hence it may be possible to 
estimate the object region by fitting a boundary around the detected object pixels. This 
boundary will include regions of colours which are missing from the current object model. 
The new colours can be incorporated by relearning the object model according to all pixels 
which lie in side the bounding contour. Depending on the application, this boundary might 
be a simple shape (e.g. an ellipse or a square), a flexible contour or snake or the projection of 
a known 3D model of a tracked rigid body. 
An example of an algorithm which continuously relearns both object and background 
models, is the EM/E-MRF algorithm (Stolkin et al., 2000, 2007b, 2007c), which combines 
simple, Gaussian models of the object and background pixel intensities with a 3D CAD 
model of the rigid tracked object. The EM/E-MRF algorithm was an attempt to tackle 
images under conditions of extremely poor visibility, by combining observed image data 
with prior knowledge in various forms. 
Given the recent trajectory of the camera relative to the observed object, a new relative 
camera pose is predicted for the current observed image. This pose is used to project a 
known 3D model of the object, yielding a prediction of the object region in the observed 
image. The projected/predicted object region can be used to roughly define those image 
pixels which represent the object. This then enables the creation of object and background 
distributions (1D Gaussians) from the observed image pixel intensities which lie in these 
regions.
The object and background distributions can now be used to segment the observed image 
(the EM/E-MRF algorithm probabilistically combines these distributions with predicted 
image data during segmentation, using the Extended-Markov Random Field procedure). 
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The 3D object model can now be best fitted to the segmented image to yield an improved 
camera pose estimate as well as a cleaner image segmentation. Now the camera pose can be 
recycled as a new input and the process is iterated. Camera pose, intensity distributions and 
image interpretation are mutually improved via an Expectation Maximisation-like iterative 
process. This iterative cycle is illustrated in figure 7. 

Figure 7. Iterative model relearning with the EM/E-MRF algorithm. Best fitting a projection 
of the tracked object provides a hard boundary to the estimated object region of the image. 
This enables object and background intensity distributions to be relearned accordingly. 

The EM/E-MRF algorithm achieves some success at interpreting extraordinarily poor 
visibility images, due to the large amount of predicted information that it incorporates into 
the segmentation process. It is an interesting exercise in probabilistically fusing two images 
of the same scene, in this case an observed image and a predicted image. However, this 
algorithm uses object and background distributions which are overly simplistic for many 
scenes. At the same time, the Extended-Markov Random Field (E-MRF) optimisation, used 
in the segmentation process, is excessively computationally expensive. 
Despite these drawbacks, the approach is included here as an interesting example of an 
algorithm which is able to simultaneously relearn both object and background distributions 
at every frame, see figure 8. 
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Figure 8. Example of EM/E-MRF tracking on a poor visibility image. Difficult, turbid 
conditions, encountered with underwater robotics, have been simulated in the lab with dry 
ice fog and focussed beam spot lights, mounted on and moving with the camera, leading to 
severe backscattering. Over four iterations, the EM/E-MRF algorithm homes in on an oil-rig 
like structure. Note how the algorithm mutually refines image interpretation, camera/object 
pose and the Gaussian object and background models. The two Gaussians separate as the 
algorithm progressively learns that object is relatively bright whereas background is 
relatively dark. 

7. Conclusion 

This chapter has explored a number of techniques in vision based tracking, with the 
common theme of continuous relearning of models of the background and the tracked 
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object. The majority of well known work in this area has focussed on relearnable 
background models for stationary cameras. These tend to be robust and stable, but adapt 
relatively slowly. More recent work has proposed models which can be completely 
relearned at every frame, enabling tracking with rapid camera motion and also robust 
tracking of objects which move across regions of background with which they share 
significant colours. 
It is important to note that, although the ABCshift algorithm can relearn the background at 
every frame, it is only able to do so because it is initialised with a known, static model of the 
tracked object. In contrast, the adaptive models for stationary camera background 
subtraction adapt much more slowly, but are able to detect and track new objects without 
any prior information about the objects’ appearance. This might suggest a hybrid scheme, 
whereby background subtraction techniques with stationary cameras are used to detect new 
objects and acquire their characteristics, and these characteristics are then passed to object 
model based techniques which can, for example, continue to follow objects of interest by 
servoing a pan, tilt, zoom camera. 
In order to enable continuous relearning of object models in addition to background models, 
it seems necessary to define the object region in each frame by a contour or boundary. Thus 
region based tracking, effectively requires the fusion of contour tracking techniques in order 
to achieve full adaptability. It is interesting to note that these ideas naturally correspond 
with calls from elsewhere in the vision community (e.g. Blake, 2005) for hybrid trackers, 
incorporating both contours and regions, as a way forwards in robust tracking research. 
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1. Introduction 

Estimating the position of a robot, a vehicle or a person in an indoor area is a significant 
issue for a number of applications in Robotics, Automation and Ubiquitous/Pervasive 
Computing. Several approaches have already been proposed in order to locate indoors the 
position of a moving target. These approaches rely on a wide range of media including RF 
signals, lasers, ultrasound, magnetic fields, visible light, infrared beams, speedometers etc. 
A combination of heterogeneous approaches is often adopted (Borenstein et al., 1996) in 
order to increase the accuracy of the position estimation.  
Cameras are widely used in a number of robotics applications (Jin et al, 2004); (Porta & 
Krose, 2006); (Clerentin et al, 2005); (Kzecka et al, 2005); (Gramegna et al, 2004); (Arras et al, 
2001). The views captured by these cameras are processed in order to locate scale invariant 
landmarks that indicate the position of the robot in a familiar area (Tovar et al, 2006). 
Moreover, the function of the human eyes can be imitated by a pair of cameras focusing at 
the same direction (Se et al, 2002). The shape, the depth and the distance of the surrounding 
objects may be estimated by comparing the images retrieved by these cameras. It is obvious 
that both the computational and the architectural cost of such a solution is high. 
Laser scanning is often used in conjunction with the image processing techniques mentioned 
above (Miura et al, 2006); (Clerentin et al, 2005); (Victorino et al, 2003); (Arras et al, 2001); 
(Thrun, 2001). A rotating beacon is transmitting a laser beam which is reflected by the 
surrounding objects. The round trip time of the signal can be used for the estimation of the 
distance between the target and an object (e.g., a wall). An ultra high speed controller 
connected to sensors with fast response is required in this case, since the laser travels with 
the speed of light and the slightest deviation in the measured time intervals would fail to 
estimate the distance with adequate accuracy. The strength of the reflected beam may also 
provide an indication of the distance between the target and an object. 
In a similar way, sonar or ultrasonic waves can be used instead of lasers (Jin et al, 2004); 
(Bicho, 2000); (Minami et al, 2004); (Holmberg, 1994); (Ullate, 1993) . In this case, it is easier 
to measure the round trip time of the reflected wave since it travels with a significantly 
lower speed than the laser but the sound can not be treated as a directional beam. Moreover, 
it is difficult to isolate the sonar transmitter from the receiver. In other words, the receiver 
cannot be sure if it “listens” to a reflected sound wave or to a sound coming from the sound 
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source itself. The distance that can be measured using sonar data is of the order of several 
centimetres.  
Another popular indoor and outdoor localisation method relies on the signal strength of 
multiple transmitters (Ladd et al, 2005); (Flora et al, 2005). For example, the Received Signal 
Strength Indication (RSSI) of the Wireless Local Access Network (WLAN) or Bluetooth 
networks can be used to estimate the distance of a mobile computer from an Access Point. 
Another example of this approach concerns the position estimation of a user in a cellular 
phone network. The signal of the three RF base stations: B1, B2 and B3 of Fig. 1 is received at 
the target with different strength. The strength of each signal indicates the distance of the 
target from the corresponding base station (d1, d2 and d3 from B1, B2 and B3 respectively).
The point where the three circles centred at B1, B2 and B3 (with radius d1, d2 and d3 
respectively), intersect is the real position of the target. The estimation accuracy depends on 
the precision that the signal strength can be measured. Although the existing infrastructure 
of the base stations can be exploited, expensive high precision analogue sensors are required 
at the side of the target.

Fig. 1. Position estimation using the triangulation method 

Magnetic fields have also been employed in order to accurately control in a non-contact way 
some machinery tools or medical instrumentation (Schlageter et al, 2001); (Kosel et al, 2005); 
(Arana et al, 2005). The distances covered in these cases range from a few millimetres to 
several tenths of centimetres. Nevertheless, distance estimation of up to 10m has also been 
reported in (Prigge & How, 2004).  
Passive and active Infrared sensors have been employed in order to estimate distances of 
less than one meter (Jin et al, 2004); (Bicho, 2000). Infrared scanning is performed in the 
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same way as laser scanning. Additional properties of the object that is scanned can also be 
identified including surface shape and texture (Aytac & Barshan, 2004); (Benet et al, 2002); 
(Novotny & Ferrier, 1999). 
An absolute position estimation method locates the current position of the target regardless 
of his previous movements. All the aforementioned methods can be considered as absolute. 
A relative position estimation approach is based on measuring how much distance has been 
walked since the last observation and in which direction. This kind of information can be 
retrieved by monitoring the speed and the steering of a vehicle (Jin et al, 2004); (Victorino et 
al, 2003); (Thrun, 2001). Stochastic processing can also be applied in order to evaluate how 
possible an estimated position is. 
The position localisation method presented in this chapter is based on the statistical 
processing of digital infrared patterns that are received at the target (Petrellis et al, 2005); 
(Petrellis et al, 2006). These patterns are transmitted by at least two infrared emitting devices 
positioned at the borders of the covered area at a proper topology. The various supported 
pattern types are recognised with a different “success rate” at the target according to its 
current position. The term “success rate” refers to the number of patterns received 
compared to the expected ones for a specific type. The success rates of all the supported 
pattern types form a multidimensional identity of a specific position. The digital processing 
of the infrared patterns is carried out by an ultra low cost system since neither high 
precision sensors nor high speed controllers are required. 
The target familiarises with the environment by visiting specific positions during a 
calibration stage. The reflections caused on the surrounding objects and walls are static and 
dynamic. The static reflections are encountered during the calibration stage and are 
exploited as an additional dimension to the position identity. The dynamic reflections 
caused by obstacles or persons that instantly appear in the covered area during real time 
operation can be considered as unpredictable dynamic noise. In order to overcome the effect 
of this noise a number of rules that confine the acceptable future positions can be applied.  
The interference of other infrared sources like sunlight are avoided by sending the infrared 
patterns over a carrier. The frequency of the carrier determines how fast a position 
estimation can be carried out. If a standard 38KHz carrier is selected, the time needed for a 
position estimation exceeds 1sec. This time can be reduced to less than 100ms if a 1MHz 
carrier is used instead. The area covered by two infrared transmitters is more than 15m2 and 
can be further expanded if additional transmitters are used in a proper topology. The 
absolute position estimation error is less than 10cm in most of the covered area (Petrellis et 
al 2006b).

2. System Architecture and Setup 

The architecture of the infrared pattern transmitter (IRTX) used in our system is presented 
in Fig. 2. A control unit generates the digital pattern signal. This signal is mixed with the 
carrier and the amplified output drives the infrared emitting diode. The carrier can be 
generated either by the control unit or by an external square wave generator. The power 
dissipation and the beam angle of the emitting diode is a significant issue since it is 
desirable to cover a wide enough area. In order to achieve this goal, more than one diodes 
can be connected in parallel (Fig. 2), positioned in a circular arrangement. If more than one 
IRTX devices are used they may share the same control unit if wiring is not an issue.  
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Fig. 2. The architecture of the IRTX device 

The structure of an infrared pattern is presented in Fig. 3. Each pattern consists of a series of 
n identical pulses with period equal to H+L. The specific pattern type is named MODn. If i j,
the pattern types MODi and MODj should be recognised with different degree of difficulty 
at the receiver. The parameters H and L are chosen longer for MODi than MODj if i<j. In this 
way, the MODi patterns are received without errors in longer distance than MODj since it 
has longer and smaller number of pulses. The transmission starts with a preamble that can 
be a special code or a long enough pause interval. Then, a set of M identical patterns of each 
supported type is transmitted. The successive patterns are separated by a pause interval P
longer than H or L. This procedure is repeated by sending a new preamble. The success rate 
of a pattern type is defined as the number of patterns received compared to the number of 
the expected ones (M).  

Fig. 3. The structure of the digital infrared patterns 

The architecture of an infrared receiver (IRRX) is presented in Fig. 4. The modulated signal 
received by the infrared sensor is driven to a bandpass filter that allows only the pulses that 
are modulated at the specific carrier frequency. Then, an integrator rejects the carrier and 
the resulting digital pulses are sampled directly by a controller that recognises the pattern 
types from the pulses and the pause intervals. The number of patterns of a specific type that 
were recognised between two successive preambles is the success rate of this type and can 
be directly used to estimate the current position. The estimation can be carried out by the 
control unit itself or by a host computer that communicates with the controller and uses the 
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estimation results at the target application. At our experimental setup, the controller is 
connected to a laptop through a serial port. A custom application running at the laptop is 
performing the position estimation algorithm and presents the position estimation results. 
Two IRRX devices are connected to the controller at the side of the target facing opposite 
directions. The orientation of these IRRX devices should be kept stable, because a slight 
rotation may drastically affect the success rates measured and the consequent position 
estimation results. At the present setup, it is assumed that the target can move on a plane 
but can not rotate i.e., it has two degrees of freedom. Nevertheless, the target may be 
allowed to rotate around itself if this can be done independently of the IRRX devices. 

Fig. 4. The architecture of the IRRX devices. 

3. Position Estimation Method 

The success rate ri of the MODi type, is the number of MODi patterns retrieved between two 
successive preambles. A calibration stage is necessary before the real time operation in order 
to familiarise with the environment. During this stage, the target visits specific positions in 
the covered area and records the retrieved success rate. If the topology of Fig. 5 is assumed, 
the target visits positions in regular distance and angular steps around an IRTX device. The 
success rates measured for a specific angular displacement can be drawn as a function of the 
distance as shown in Fig. 6.  
The discrete values measured during the calibration can be approximated by a continuous 
non linear model like Richards’ (Bates & Watts, 1988), before the real time operation of the 
system: 
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The success rate ri is approximated as a function of the distance d for a specific angle, while 
the parameters p1, p2, p3 and p4 are estimated by an external off the shelf optimisation tool. If 
the IRTX device supports k types of patterns, the calibration is performed in l directions and 
m positions are visited in each direction, then a set of k·l·m equations like (1) have to be 
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estimated. In fact, only the parameters pi have to be stored requiring a memory of 4·k·l·m
floating point values.   

Fig. 5. Calibration at regular angle and distance steps. 

Fig. 6. Approximation of the calibration values with a nonlinear model (Petrellis et al 2006a). 

Alternatively, the success rates for a specific distance can be drawn as a function of the 
angular displacement as shown in Fig. 7. 

IRTX
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(a)

(b)
Fig. 7. The success rates as a function of the angular displacement for a specific distance 
(Petrellis et al 2006a). 

The polar coordinates of the target related to the IRTX device can be estimated as follows 
(Petrellis et al, 2006a): if the pattern types MOD2, MOD5, MOD6 and MOD9 are supported 
by the IRTX device of Fig. 5 and the success rates r2, r5 , r6 and r9 are retrieved by the target 
at a specific position during real time operation then the curve sets of all the specific 
distances have to be checked out. For example, if the set of curves at a distance of 2m are 
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used, the success rate values do not converge to the same angular displacement (Fig. 7a). On 
the contrary, if the curves retrieved at a distance of 2.5m are used, the measured ri values 
converge to a ±30o angular displacement (Fig. 7b). The ambiguity of whether the target is 
located at the right or at the left side of the IRTX device can be clarified if a second IRTX 
device is positioned in a topology like the one presented in Fig. 8. Hence, the IRTX2 device 
is used in order to break the symmetry and extend the covered area.  

Fig. 8. Placing a second IRTX device in the covered area.  

The approach described above suffers from two important drawbacks. First of all, the 
reflections from the surrounding area have to be negligible. Otherwise, the behaviour of the 
success rate is not similar to the one presented in Fig. 6 and 7 and a unique model like 
Richards’ is not applicable. For the same reason, the two IRTX devices should not transmit 
their patterns concurrently in order to avoid scrambling.  
These limitations can be overcome if the calibration and position estimation method is based 
on a grid (Petrellis et al, 2006b). The grid plane extends to all the covered area. During the 
calibration stage, the target visits the grid nodes and registers the retrieved success rates in 
the vectors A, B, A’ and B’. The patterns retrieved “in order” by the IRRXA device are stored 
in A while patterns that are recognised “out of order” by the same device are stored in A’. In 
a similar way, the vectors B and B’ refer to patterns that are received by the terminal IRRXB.
For example, if the IRRXA device points towards the IRTX1 that supports the pattern types 
MOD3, MOD4, MOD7 and MOD8, then the vector positions A[3], A[4], A[7] and A[8] store 
the corresponding number of patterns received “in order” between two preambles. If the 
IRTX2 device supports MOD2, MOD5, MOD6 and MOD9 types, the corresponding vector 
positions for the patterns received “in order” are B[2], B[5], B[6] and B[9] since IRRXB is 
facing towards IRTX2. Nevertheless, IRRXA may also receive patterns transmitted by IRTX2 
through reflections. The corresponding number of patterns are stored in A[2], A[5], A[6] and 
A[9] and are viewed as “unexpected”.  

IRTX2

IRTX1
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The success rate vectors A, A’, B and B’ form the identity of a position. The reflections and 
the scrambling are encountered as different dimensions in these vectors (“expected”, 
“unexpected” and “out of order” patterns). Thus, instead of viewing them as a drawback we 
exploit their effect in order to increase the estimation accuracy and eliminate the limitations 
posed by the polar coordinates approach. Consequently, static reflections are allowed in this 
approach and the IRTX devices may transmit their patterns concurrently.  
During real time operation, the current success rates retrieved by the target are compared 
with the grid node rates that were retrieved during the calibration stage. The comparison is 
based on the relative differences estimated by the equations (2) and (3): 
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The parameter vj is the j-th position of the composite vector C=[A A’ B B’] while rij is the 
corresponding value of the success rate vectors retrieved during calibration for node i. The 
individual success rate differences for all the C vector positions are summed up and the grid 
node i with the smaller Di value is selected as the closer to the target position. 
Although no model has been used to describe how the success rate of a pattern varies in 
neighbouring positions, it may be assumed that if the grid nodes are close enough it changes 
linearly between two successive nodes. Thus, if the success rate of a pattern at the nodes i
and j, are ri and rj, the success rate r at the middle of these nodes is 

2/)( ji rrr +=  (4) 

The selection of the grid node distance is critical and a trade off has to be made between the 
calibration speed and the estimation accuracy. If the node distance is very short, the high 
number of grid nodes will increase the duration of the calibration stage and the memory 
requirements. Moreover, if there are too many grid nodes then there will be an increased 
possibility that nodes with almost identical success rate identities will exist. These nodes 
may be confused in real time operation leading to erroneous position estimations. On the 
other hand, if a long distance is selected, then the assumption that the success rate of a 
pattern changes linearly between two neighbouring nodes is not valid.  
In Fig. 9, the success rate of an expected (a) and an unexpected (b) pattern is drawn in an 
area of 1mX1m. A study of several 2D graphs like the ones presented in Fig. 9 leads to the 
conclusion that a grid with a 20cm node distance is appropriate for our system since the 
concept of the linear success rate variation between neighbouring nodes is preserved in 
most of the cases without significantly increasing the number of the grid nodes. 
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Fig. 9. Success rate variation in 2D of an expected (a) and unexpected (b) MOD7 pattern. 

A refinement step follows the selection of the initial grid node in order to estimate more 
accurately the real position of the target. This step is basically an extension of the 
interpolation search algorithm in two dimensions. A new grid with the half node distance is 
defined by estimating the success rate identities of the new nodes using the equation (4). 
Consider for example Fig. 10 where the node E0 of the initial grid is selected by the first 
comparison between the current and the calibration success rates. The success rates of the 
virtual nodes at the middle of E0 and its neighbouring nodes Ex are estimated using 
equation (4) and their differences from the current rates are extracted using equations (2) 
and (3). The virtual node with the smallest Di value is selected as the centre of the new grid 
(node E0’ in Fig. 10). The aforementioned procedure is repeated for the nodes of the new 
grid and a new position between E0’ and the rest of the Ex’ nodes is selected (E0’’). If the 
definition of a new grid does not lead to a lower Di value, then the recursive refinement 
procedure terminates.  
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Fig. 10. The refinement step in the position estimation 

4. Carrier Signal Options 

As already mentioned in section 2, the patterns are transmitted over a carrier (Fc) in order to 
make it feasible for the receiver to abort the interfering infrared noise. A high pulse of an 
infrared pattern MODi should last for multiple carrier periods in order to reassure the 
effectiveness of the receiver bandpass filter: 

ci FkH /=  (5) 

If H=L the time needed to transmit the set of the identical MODi patterns is 

)/2( ci FikPMT +=  (6) 

If Tpream is the duration of the preamble, the total time T that is needed to transmit all of the 
supported patterns is 

++=
i

cpream FikPMTT )/2(  (7) 

It is obvious from equation (7) that the position estimation procedure is slow if a low 
frequency carrier is chosen. For example, using the standard 38KHz carrier, the location of a 
position requires more than one second but low cost sensors with embedded carrier 
rejection circuitry can be employed at the side of the receiver. A significant reduction in this 
time can be achieved if a higher carrier frequency is used. In this case, higher processor 
speed, fast infrared emitters/sensors and a custom carrier filter are required.  
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Fig. 11. A custom filter for high frequency carrier. 

For example, the filter of Fig. 11 is used in this case. The infrared diode D1 is connected 
inversely allowing a low current in the absence of infrared light (e.g., less than 50uA if the 
device model SFH203 is used). This current is increased to 80uA if infrared light falls on D1.
The resistance Ri converts the current levels of D1 to voltage input at the Multiple Feed Back 
Filter (MFBF) that consists of R1, R2, C3, C4, R3 and IC1. If B is the desired bandwidth i.e., 
the frequency range where the signal is attenuated less than -3dB compared to the centre 
frequency fc, the quality factor Q is defined as 

BfQ c /=  (8) 

If G is the desired filter gain (Q and G should not be much greater than 1) and the capacitors 
C1 and C2 are equal to a selected value Cp, the resistors R1, R2 and R3 can be estimated 
using the following equations (Lancaster, 1995): 

CpGfQR cπ2/1 =  (9) 

CpfGQQR cπ)2/(2 2 −=  (10) 

CpfQR cπ/3 =  (11) 

The operational amplifier IC1 is a high speed device capable of providing unity gain at 
much higher frequencies than fc. For example, if the carrier frequency is 1MHz, the gain 
flatness of IC1 should be kept less than 0.1dB for frequencies up to 60MHz. This requirement 
is harder to achieve if single power supply is used. The output of the IC1 is amplified by T1
through C1 that isolates the MFBF filter from the amplification stage. The values of C1 and 
R5 are chosen in order to further attenuate the frequencies that are lower than fc. The simple 
circuitry consisting of the components D2, C2 and R6 acts as an AM demodulator rejecting 
the current as can be seen in Fig. 12. 
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Fig. 12. The form of the received 1MHz signal at various stages of the MFBF filter. 

Fig. 12 presents the behaviour in time of a 1MHz filter that attenuates by -30dB the signals 
with frequencies lower than 800KHz and greater than 1.2MHz. An input signal modulated 
at 1MHz appears at the junction P1, while P2 is the output of the MFBF filter. Although the 
output of the demodulator (Out) is slightly rippling the signal can be safely sampled by a 
digital input.
Although several alternative passive or active filters could have been employed, the study of 
these options is out of the scope of this chapter. Using a 1MHz filter like the one presented 
above, the duration of the position estimation procedure can be reduced to less than 100ms.  

5. Real Time Position Validation Rules 

The results of successive position estimations may differ significantly even if the target 
stands still. This is due to the fact that dynamic noise and reflections have not been 
considered during the calibration stage. The rules described in this section can help the 
system reject the estimation results that differ significantly from the original target position 
(Petrellis et al, 2006c). Some of these rules can be used as estimation correction techniques or 
they may simply force the system to repeat the estimation process. As the target moves 
within the covered area, it performs position localisation processes at regular intervals Ts.
Each process includes S successive position estimations. Thus, the duration of a localisation 
process is S·T where the time T was estimated by equation (7).   

5.1 Limited Speed Rule (LSR) 

The speed of the vehicle or the person that is considered as a target is always limited and 
slow. Thus, the distance Rs that may be walked between the successive localisation 
processes is also limited by the following relations: 

)()( TsTVRTsTV smxssmn ⋅+≤≤⋅+  (12) 

The parameters Vmn and Vmx are the minimum and the maximum speed of the target 
respectively, while s is the sequence of the specific estimation within a localisation process 
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(1 s S). There is always an upper limit for the speed of the target but not a lower one since 
the target may not move for a while. In this case, Vmn =0 and the value of s defines disks that 
have as a common centre the position that has been selected by the previous localisation 
process. The coordinates estimated by the current position localisation process have to 
reside within these disks, otherwise they are rejected (Fig. 13a). If the target always moves 
(Vmn >0), then homocentric rings that possibly overlap are defined by the relation (12) and 
the result of a position estimation has to reside within the corresponding ring as shown in 
Fig. 13b. 

(a)      (b) 
Fig. 13. The limitations in the speed of the target define disks (a) or rings (b) where the 
acceptable positions reside.  

The LSR rule can be used as a correction method if all the estimated positions are outside 
the limits of the disks or the rings. If P is the centre of the disk and P’ is the closer estimated 
position outside the disk, then the point P’’ selected. This is the point where the border of 
the disk intersects with the line that connects P with P’ as shown in Fig. 14. 

          
      

Fig. 14. Correction of the estimated results using LSR. 

5.2 Neighbouring Regions Rule (NRR) 

The way that the success rate of the patterns varies within the covered area may be used to 
divide this area in neighbouring regions. The concept of the NRR rule is that the target may 
cross neighbouring regions but cannot be found suddenly in a distant region. The NRR is 
actually a relaxed LSR rule and its basic purpose is the extension of the covered area by 
using more than 2 IRTX devices.  
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If the success rates presented in Fig. 9a and 9b are used, the regions A, B, C and D of Fig. 15 
can be defined. The success rate class of A7 in the range [0,10] is considered high (H) if it is 
more than 7, medium (M) if it is between 4 and 7, low (L) if it is between 1 and 4 and zero 
(Z) if it is less than 1. In a similar way, the success rate class of B7 is defined as H, M, L, Z in 
the range [0,0.6]. Thus, the symbol C(M,Z) for example defines the region C where the 
success rates class of A7 is M and B7 is Z. A more accurate definition of the regions can be 
achieved if more than two success rate types are considered.  
     

Fig. 15. Regions defined by the success rates of Fig. 9 

If the speed of the target is low enough, it is assumed that it can only be found in the same 
or neighbouring regions in successive localisation processes. For example, if it is initially 
found in region B, the next acceptable position is allowed to be in regions A, B or C but not 
in D.
The area that is covered may be extended if the concept of the NRR rule is used with three 
or more IRTX devices. If the IRTX devices that are presented in Fig. 16 are used, the draft 
regions drawn in the same figure are defined. Each one of the IRTX1, IRTX2 and IRTX3 
transmitters supports a different set of patterns. In this way, the target distinguishes the 
source of the patterns it receives. For example, if the reflections and the scrambling are 
negligible in the area of Fig. 16, the target receives high success rates from IRTX1 on IRRXA

and lower success rates from IRTX2 on IRRXB when it is in region A. Similarly, in region B it 
receives high success rates from IRTX2 on IRRXB and lower from IRTX1 and IRTX3 on 
IRRXA.
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Fig. 16. Extending the area covered by using three or more IRTX devices. 

In a real environment the regions neither have the regular shape presented in Fig. 16, nor 
the same size. They are defined using the information of 3D graphs like the ones presented 
in Fig. 9 and some distant regions have the same features if three types of IRTX devices are 
used repeatedly. The target should keep track of the regions that it has crossed in order to 
distinguish the exact region of its current position. For example, in regions B and E the 
target receives patterns with high success rate from IRTX2 on one IRRX device and lower 
success rates from IRTX1 and IRTX3 on the other IRRX device. This may cause a confusion 
of whether being in region B or E. Nevertheless, if it knows that the previous regions 
crossed were C and D in this specific turn, then the region E will be selected. 

5.3 Direction Preserving Rule (DPR) 

The third rule is based on the fact that the target is moving on the same rough direction 
most of the time. Although this is not true if for example the target follows a circular track, 
this rule can be very helpful in the general case. If k successive positions of the target are 
considered then k-1 lines starting from the first position are defined as shown in Fig. 17. Two 
of these lines determine the wider angle that is considered as the rough direction where the 
next position is assumed to reside. The lower value that k can get is 3. In this case the two 
lines determine a single angle. For example, the positions P0, P1 and P2 determine the initial 
rough direction in Fig. 17. The next position (P3) should reside within the angle defined by 
P0, P1 and P2. Then, the direction is updated using P1, P2 and P3 and the next position (P4)
should reside within the angle defined by these three points.  
The angle of P0, P1 and P2 is defined by: 
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In the general case k points define (k-1)(k-2)/2 angles. The wider angle is chosen as the one 
with the lowest cosine value. The next position should reside within the wider angle. If P0,
P1 and P2 define the wider angle then the next position Pn should comply with the 
following relations: 

)20ˆ1cos()0ˆ1cos( PPPPnPP ≥  (14) 

)20ˆ1cos()20ˆcos( PPPPPPn ≥  (15) 

The applicable values used for k are 4 to 6. Using k=3 is too restrictive since the angle 
defined is narrow and may often be 0o. On the other hand, using a high value for k leads to 
extremely wide angles that do not reject any of the estimated positions in a localisation 
process .    

          
      

Fig. 17. Direction Preserving Rule 

5.4 Steering Control Rule (SCR) 

The SCR rule can be applied if the target is allowed to change his direction in specific angles. 
If  is the set of the allowed angles , then three successive positions P1(w1,l1), P2(w2,l2) and 
P3(w3,l3) should satisfy the following relation: 
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The SCR rule can also be used as an error correction rule if the closer position to an 
acceptable direction is rotated as shown in Fig. 18. In the general case presented in this 
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figure, four angles are allowed (0o, 1, 2 and 3). If P3 is the estimated position that is closer 
to an allowed direction ( 2), the position P3 is rotated by equations (17)-(19) and the 
resulting position P3’ has the same distance d from P2 but in an acceptable direction.

Fig. 18. Error correction using the SCR rule 
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6. Case Study 

The experimental topology presented in Fig. 19 is used as a case study. Two IRTX devices 
are positioned in 1.8m horizontal and 3m vertical distance. Each IRTX device has two 
infrared emitting diodes of different type connected in parallel, placed in 45o angle. The 
external continuous line defines the range of at least one IRTX device signal. The area 
covered exceeds 15m2 but the quality of the estimation results is not the same everywhere.  
If a grid covering the whole area with long node distance (40cm) is considered then an 
estimation with an absolute error that is less than the half of the node distance (20cm) is 
acceptable. Each position localisation process carries out 5 successive estimations (S=5) and 
is considered successful if at least one of them has an absolute error of less 20cm. In this 
case, a 65% of the positions visited experimentally were localised successfully. If the four 
rules described in Section 5 are applied, then more than 90% of the positions visited are 
estimated successfully.  
The absolute error can be reduced if a shorter node distance is used. In this case, it is 
difficult to cover the whole area since the number of grid nodes is significantly increased 
leading to a longer calibration time and possibly to poor results as already described in 
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Section 3. If we focus on the 1m2 area in the dotted square of Fig. 19 and use a 20cmX20cm 
grid, then all the positions visited are localised with an error of less than 10cm.  

          

Fig. 19. The area covered by two IRTX devices 

The dotted area of Fig. 19 and the corresponding success rate variation of Fig. 9 and Fig. 15 
are used in order to describe how the LSR, NRR and DPR rules of Section 5 are used. The 
SCR is not applied since the target is free to turn in any direction. The real track of the target 
is the one depicted with the bold continuous line in Fig. 20. The dashed circles indicate the 
maximum LSR distance that the target was allowed to walk between two localisation 
processes. For simplicity reasons we only refer here to multiple estimation results of a 
localisation process when they are used by the position restriction rules. 
The LSR and NRR rules are applied first while the DPR rule is used in a supplementary 
way. If we assume that the positions P1, P2 and P3 have already been estimated, the 
position P4 is selected as a next step instead P4’ since the last one deviates the LSR rule. 
Note that both of P4 and P4’ are compliant with the NRR rule but this is not a problem since 
the NRR is a relaxed LSR rule targeted for the potential extension of the covered area. In the 
next localisation process none of the estimated positions complies to any of the three rules. If 
P5’ is one of the unaccepted positions that is closer to P4 then the position P5 is the result of 
the error correction performed by LSR. In the following localisation process both P6 and P6’
are acceptable by LSR and NRR. In this case, the DPR rule can be used to abort P6’. The 
previous positions P2, P3, P4 and P5 (i.e., k=4) are used by the DPR rule in order to define 
the rough direction depicted by the dotted lines starting from P2 in Fig. 20. Finally, the two 
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alternative positions: P7’ and P7’’ deviate both the LSR and the DPR rules in the next 
localisation process but P7’ is compliant with NRR. Thus, P7’ is selected in the LSR error 
correction method that leads to P7 as the last position of the target in this example. The 
bold-dashed line of Fig. 20 is the estimated target track. 

Fig. 20. The use of the LSR, NRR and DPR rules. 

7. Conclusions 

A novel method for the indoor localisation of a target was presented in this chapter. This 
method is based on measuring the number of the digital infrared patterns received by the 
target in a specific time interval (success rate). At least two transmitting devices are placed 
around the covered area that exceeds 15m2, while a pair of infrared receivers are mounted 
on the target. This area is supposed to be covered by a virtual grid and can be further 
extended if more transmitters are employed. The grid nodes are visited by the target during 
a calibration stage when it familiarises with the retrieved success rates. At real time 
operation the closer grid node is selected and a refinement step based on a 2D interpolation 
search follows leading to a more accurate position estimation.  
The absolute error that can be achieved is less than 10cm but may vary significantly if 
successive estimations are carried out at the same position. Four deterministic rules are 
described in order to abort the false estimations caused by dynamic noise and stabilise the 
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estimation procedure. The speed of the localisation procedure depends on the frequency of 
the carrier that is used in order to shield the patterns from the interference of other infrared 
sources. The rather long estimation time that is needed for a standard 38KHz carrier 
frequency  can be reduced to less than 100ms if a higher frequency is selected. The design of 
a custom 1MHz carrier filter was presented as an example.  
Future work will focus on experimenting with various infrared pattern structures and 
system topologies in order to increase the estimation speed and accuracy and expand the 
area covered. Finally we will attempt to utilise the concept of our system in the case of 
targets with more degrees of freedom (moving in three dimensions, rotating etc).  
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Pseudo Stereovision System (PSVS): A 
Monocular Mirror-based Stereovision System
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1. Introduction 

For the autonomous movement of a robotic system, in real time, it has to perceive its 
environment, to calculate the position of a target or of a block and to move properly. For this 
reason, many types of sensors and apparatus have been proposed. The target state is 
required to be accurately calculated and a desired task or procedure to be safely and 
successfully integrated. In cases of limited intelligence of the system, mainly in industrial 
environments, the adaptation of the system to new data is necessary. The advantages of the 
proper use of sensors mounted on the end effector of a manipulator or on a mobile robot are 
multiple. 
Using cameras as sensors it is possible to have mainly vision systems with one or more 
cameras. A stereovision system is composed of two cameras. For the recovery of a 3-D scene 
from a pair of stereo images of the scene, it is required to establish correspondences. 
Correspondence between points in images is a major step in stereo depth perception. This 
step is known as the correspondence process, and many algorithms for it have been 
developed. Another major step is the computation of depth values from the point 
correspondences. 
The stereo process can be summarized by the following steps: 1) detection of features in 
each image 2) matching of features between images under certain geometric and other 
constraints and 3) calculation of depth using the disparity values and the geometric 
parameters of the imaging configuration. While each of these steps is important in the stereo 
process, the matching of features (correspondence between points) is generally thought to 
be the most difficult step and can easily become the most time consuming. 
Depth perception via stereo disparity is a passive method that does not require any special 
lighting or scanner to acquire the images. This method may be used to determine depths of 
points in indoor as well as outdoor scenes, and depths of points that are centimeters or 
kilometers away from the viewer. 
A correspondence algorithm can produce more reliable matches if the underlying images 
have smaller intensity and geometric difference. If the scene has Lambertian surfaces, there 
would be no difference in the intensities of corresponding points in images. For stereo 
images acquired by the two cameras, the focal lengths and zoom levels of the cameras are 
often slightly different. Differences in the optical properties of the two cameras cause 
intensity differences between corresponding points in stereo images. The optical axes of the 
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cameras may not lie in the same plane also. These unwanted geometric and intensity 
differences should be reduced as much as possible to increase the ability to find 
correspondences reliably. 
In cases of monocular (single camera) stereovision systems the above problems are reduced. 
In these systems, a single camera and some mirrors or a biprism, properly placed, are used, 
so that the reception of a stereo pair of images to be possible. The correspondence points are 
usually found on a single line (epipolar line), the intensity differences of these points are 
reduced and the two virtual cameras, which constitute the stereovision system, have the 
same geometric properties and parameters. 
In this chapter, the design and the construction of a new apparatus for stereovision with a 
single CCD camera, is presented. It is called Pseudo Stereo Vision System (PSVS) and it is 
composed of a camera, three mirrors and a beam-splitter. PSVS, compared with other 
monocular or binocular stereovision systems (Section 2), has the following advantages: 
1. It is a relatively low cost and robust apparatus, it has no moving parts and it can be 

used in place of any vision system. 
2. It uses only one common CCD camera and thus the two created virtual cameras of the 

stereo system have the same geometric properties and parameters. 
3. It receives a complex image (the superposition of a stereo pair of images), which is 

directly processed (pseudo stereo), in a single shot. 
4. It has the double resolution of other monocular systems and the same resolution with 

an ordinary stereo system. 
5. It can be constructed to any dimensions covering every type of camera, length of 

baseline, accurate measurement of depth. 
6. Using the correspondence algorithm (Pachidis & Lygouras, 2002a), (Pachidis et al., 

2002) and (Pachidis & Lygouras, 2006), it is easy to find points disparities. 
Drawbacks of PSVS could be the following: 
1. Known correspondence algorithms cannot be implemented to complex images. For this 

reason, a new correspondence algorithm capable to find correspondences in edges has 
been developed. 

2. Correspondences cannot be found when the two different views of an object are 
overlapped. In these cases the proposed correspondence algorithm can find correspon-
dences in edges of overlapped objects or parts of them. Moreover, in this chapter, two 
methods to separate complex images into pairs of stereo images (where any 
correspondence algorithm can be implemented) are described. 

The chapter is organized as follows. In Section 2, single camera stereovision systems, 
described by other researchers, are examined. In Section 3, construction details of PSVS and 
refraction phenomena due to the beam-splitter are presented. In Section 4, recalculation of 
the final equations, taking into consideration refraction phenomena and camera calibration 
parameters, of the coordinates of a point by using PSVS, are introduced. In Section 5, basic 
concepts of the correspondence algorithm used are presented. In Section 6, two methods for 
the separation of a complex image into a pair of stereo images and the reconstruction of 
them are given.  In Section 7, some experimental results are depicted. Finally, in Section 8, 
conclusions of this work and future plans are presented. 
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2. Existing Single Camera Stereovision Systems 

Many single camera stereovision systems have been proposed in the literature. Teoh and 
Zhang (Teoh & Zhang, 1984) described a single-lens stereo camera system. Two mirrors, 
fixed to the body of the camera, make a 45o angle with the optical axis of the camera. A third 
mirror that can rotate is placed directly in front of the lens. The rotating mirror is made 
parallel to one of the fixed mirrors and an image is obtained. Then, it is made parallel to the 
other fixed mirror and another image is obtained. Here, although a single camera is used, 
the result is the same as using two cameras with parallel optical axes.  
Nishimoto and Shirai (Nishimoto & Shirai, 1987) proposed a single-lens camera system that 
can obtain stereo images. In this system, a glass plate is placed in front of the camera, and 
images are obtained with the plate at two different rotational positions. When the glass plate 
is rotated, the optical axes of the camera shifts slightly, simulating two cameras with parallel 
optical axes. The obtained stereo images have very small disparities making the point 
correspondence easy. However, only coarse depth values can be obtained from the 
disparities. This camera system requires two shots from a scene and therefore should be 
used only in static environments. Otherwise, the scene will change during the time the 
images are obtained, and the positions of the corresponding points will no longer relate to 
the depths of points in 3D. 
Both of these cameras considerably reduce unwanted geometric and intensity difference 
between stereo images. But the cameras have parts that should be rotated when obtaining a 
pair of images. Exact rotation of the parts is a major design issue in these systems, and two 
shots of a scene are required.  
Several researchers demonstrated the use of both curved and planar mirrors to acquire 
stereo data with a single camera. Curved mirrors have been primarily used to capture a 
wide field of view. Nayar (Nayar, 1988) suggested a wide field of view stereo system 
consisting of a conventional camera pointed at two specular spheres. Later, Southwell et al. 
(Southwell et al., 1996) proposed a similar system using two convex mirrors, one placed on 
top of the other. 
Gosthasby and Gruver (Gosthasby & Gruver, 1993) proposed a single camera system that 
can obtain images in a single shot using a single lens. The obtained images are reflected 
about the image of the mirrors axis. This camera system can obtain images in a single shot 
and through a single camera. But, the reversed image should be transformed to appear as if 
obtained by cameras with parallel optical axes, before carrying out the correspondence and 
measuring the depth values from the correspondence. The inter-reflection between the 
mirrors causes intensity difference between corresponding points in stereo images.  
Stereo systems using four planar mirrors were proposed by both Inaba et al (Inaba et al., 
1993) and Mathieu and Devernay (Mathieu & Devernay, 1995). In their recent work, Nene 
and Nayar (Nene & Nayar, 1998) proposed four stereo systems that use a single camera 
pointed toward planar, hyperboloidal, ellipsoidal, and paraboloidal mirrors. By using of 
non-planar reflecting surfaces such as hyperboloids and paraboloids, a wide field of view 
(FOV) images are easily obtained. However, their stereo system needs a complex mirror 
mechanism. Gluckman and Nayar (Gluckman & Nayar, 1998a) and Gluckman and Nayar 
(Gluckman & Nayar, 1999) demonstrated how two mirrors in an arbitrary configuration 
could be self-calibrated and used for single camera stereo. Gluckman and Nayar (Gluckman 
& Nayar, 1998b) presented the design of a compact panoramic stereo camera, which uses 
parabolic mirrors and is capable of producing 360o panoramic depth maps. Gluckman and 
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Nayar (Gluckman & Nayar, 2000) also presented a novel catadioptric sensor, which uses 
mirrors to produce rectified stereo images. 
Lee, Kweon and Cipolla (Lee et al., 1999) and Lee and Kweon (Lee & Kweon, 2000) propo-
sed a practical stereo camera system that uses only one camera and a biprism placed in front 
of the camera. The equivalent of a stereo pair of images is formed as the left and right halves 
of a single charge coupled device (CCD) image using a biprism. This system is more accura-
te for nearby objects than for far ones. Their system is simple but a biprism cannot be found 
easily. Peleg et al. (Peleg et al., 2001) presented two stereovision systems with one camera by 
using a spiral-like mirror or lens. These systems, right now, cannot be used in real time 
applications. By imaging an object and its mirror reflection, a stereo image can also be 
obtained using only a single mirror, Wuerz et al (Wuerz et al., 2001).  
Song et al (Song et al., 2002) presented an apparatus with a rotated mirror. For the 
measurement of depth, they observed that from the sequence of the captured images, the 
velocity of pixels is increased when the distance of objects in a scene is increased. Finally, 
Kawasue and Oya (Kawasue & Oya, 2002) presented an apparatus based on a single camera 
and a rotated mirror. The apparatus can be only used in a small number of applications. 

3. System Description and Analysis 

3.1 System Description      

The main idea is based on using three mirrors with a 100% reflection of their incident light 
and a 50% beam-splitter. Refraction phenomena do not appear to first three mirrors because 
the first surface of them is used (first surface mirrors). 
To determine the relative location of mirrors in PSVS, a right-hand orthogonal coordinate 
system is defined. Z-axis of this system coicides with the optical axis of the real camera and 
the origin of it is the optical center O of the camera. X-axis, vertical to Z-axis, is parallel with 
the direction of columns increment in the image plane and Y-axis is vertical to the plane XZ.
Mirrors of PSVS are vertically located to XZ plane and form 45o angle with Z-axis (Fig. 1(a)).  
It is considered that initially no refraction phenomena exist due to mirror (1) (i.e. by using a 
Pellicle beam-splitter). Then two virtual cameras are created with their optical axes parallel 
to the optical axis of the real camera. These cameras are symmetrically located to Z-axis.
They have the same geometric properties and parameters (the same of the real camera). 
Consequently, these virtual cameras constitute an ideal stereovision system with two 
cameras. This vision system, as it presented here, receives in a single shot one complex 
image. This image consists of two superimposed images captured from the left and right 
views of the apparatus. 
If the intensity of each pixel of an image captured from the left and from the right view are 
IL(i,j) and IR(i,j) respectively, the intensity of each pixel of the complex image is given as: 

( ) ),(1),(),( jiIkjiIkjiI RLC ⋅−+⋅=  (1) 

Where i, j, are indices of the current row and column of a pixel in the image. k is a parameter 
(k=0.5 with the beam-splitter used) declaring the reduction of the intensity of pixels of each 
view because of the beam-splitter. It is obvious that the intensity in a complex image never 
exceeds its maximum value, (for gray-scale images 255j)(i,IC ≤ ).  The baseline of this stereo 
system is b and it is the distance between the two virtual parallel optical axes  (Fig. 1(a)). 
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Figure 1. PSVS: (a) Mirrors position (b) PSV apparatus mounted on the end effector of a 
PUMA 761 robotic manipulator 

Problems with correct luminosity are reduced from the system by using a regulated lighting 
system on the apparatus (Fig. 1(b)). A small laser module is incorporated to the apparatus. 
The red spot laser beam is used to periodically check the alignment of mirrors. The front 
view of the PSVS is properly formulated to accept “spatial” or color filters. 

3.2 PSVS Geometry Equations                 

In PSVS, to avoid probable shades of parts of complex images because of the improper size 
or of the location of mirrors and the appearance of ghost images, the calculation of mirrors 
dimensions is required. The equation providing these dimensions is the following:  
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Angle 2  represents the angular field of view of the lens while 1 is the angle the optical axis 
forms with a mirror plane (Fig. 2). OB is the path a light beam follows along the optical axis 
from the optical center of the real camera to a mirror.  From equation (2) partial cases for 

1=45o and 1=90o are derived.  
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Figure 2. Calculation of mirror dimensions 

Case studies:  
1. °= 451 . Then: 
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Equation (3), permits the calculation of the dimension of each mirror which forms an angle 
of °= 451  with the optical axis. More details can be found in (Pachidis & Lygouras, 2005). 
The other dimension of each mirror is vertical to the optical axis, namely °= 901 .
2. °= 901 . Then: 

aOBaOBaOBBCABAC tan2tantan ⋅⋅=⋅+⋅=+=  (4) 

Sections AB and BC are equal, when °= 901 . From the previous relations and taking into 
consideration that the optical axes are vertical to the sub-frames (left and right views), it 
results that each virtual optical axis will pass from the geometric center of the corresponding 
sub-frame (view) captured by PSVS.  
In PSVS, the four mirrors are grouped in two pairs. The first pair consists of mirrors (1) and 
(2) and it is responsible for the creation of the virtual camera 1, while the second pair con-
sists of the mirrors (3) and (4) and it is responsible for the creation of the virtual camera 2.  
By definition the distance of the two pairs of mirrors is the distance AB (Fig. 3). The 
estimation of distance OB used in the previous equations (Fig. 2), giving the dimensions of 
mirrors, presuppose the knowledge of the length of baseline b or and the distance AB of the 
two mirror pairs. The minimum length of the baseline bmin depends on the angular field of 
view 2  of the lens, the distance of the beam-splitter from the optical center O and the 
distance AB of the mirror pairs. 
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Figure 3. Calculation of minb  and minAB

The design of PSVS permits to freely select the distance OA of the real camera optical center 
from the beam-splitter. Only a maximum value of it, OAmax, is necessary to be determined. 
Equation (5) provides the minimum length of the baseline, bmin in its general form and 
equation (6) bmin when the angle of mirrors with the optical axis is o45 : 
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( ) ( ) ( ) ( )min

111
2

1

1
min tantantan2tantan1tan1tan

tantantan4 ABOA
aaaa

aab +⋅
−⋅⋅−⋅−⋅+⋅

−⋅⋅=  (5) 

( ) ( )min2min tan1
tan4 ABOA

a
ab +⋅

−
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It is considered that the distance OA has its maximum value. 
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The minimum distance of the two pairs of mirrors, minAB , in its general form, is given by the 
relation (7): 
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For angle o451 = , (7) is simplified to: 

( ) ( )aad
a
aOAAB tan1cos2

tan1
tan2

min +⋅⋅⋅+
−
⋅⋅=  (8) 

To calculate the Minimum Distance of Common View, Fig. 1(a) is used. The distance of interest 
is OB. The point B represents the first common point, which is created from the two virtual 
cameras, where no refraction phenomena are taken into consideration. From the right 
triangle (O1AB), it results:  
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3.3 Refraction Phenomena                        

In this part, the influence of refraction phenomena due to mirror (1) of PSVS is examined. It 
is desirable, the left and right view of a scene captured by means of PSVS to coincide and to 
have exactly the same magnification. The second virtual camera, due to refraction phenome-
na to beam-splitter, undergoes a parallel displacement to the optical axis of the real camera. 
Simultaneously the optical center O2 shifts on the virtual optical axis (Fig. 4).  
To accurately calculate paths of a light beam in two different directions, created by these 
two virtual cameras, the displacement of the virtual axis and the shifting of the virtual opti-
cal center O2 must be calculated. Using Snell law, (Pedrotti & Pedrotti, 1998), the refraction 
angle of a light ray from the optical center O, along the optical axis, is the following: 

⋅= −
i
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n sinsin 1  (10) 

Where i is the incidence angle. If 1 is the angle formed by the optical axis with mirror (Fig. 
4), then i=90 - 1. If d is the mirror (1) thickness the displacement m of the second virtual 
camera, after some simple trigonometric calculations, can be calculated as:  
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Figure 4. Refraction phenomena due to beam-splitter 

The shifting of the optical center O2, l, is calculated as the difference in distance of a ray from 
the optical center O2 until mirror (4), when this ray is radiated through mirror (1) with 
refraction and without refraction. The result is the following relation: 
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We can see that parameters m and l are depending on the refraction indices and the beam-
splitter thickness. For incidence angle o

i 45= , m and l have the values of Table 1.

m (mm) 0.329142 
l (mm) 0.377964 

Table 1. Values of parameters m and l in mm 

By means of the above results for the displacement m and the shifting l the construction of 
the apparatus could be separated in two partial cases. In first case the simplicity in 
construction and in mirrors alignment is desirable. The distance between mirrors (1) and (2) 
or (3) and (4) is selected to be exactly the same and equal to b/2. Then, the second virtual 
camera optical axis, due to refraction phenomena to mirror (1), is displaced along X-axis by 
m and the optical center O2 is shifted along Z-axis by l. Shifting by l means that the left view 
of the apparatus, in relation with the right view, is a bit magnified. This means that not all 
the corresponding points are found in exactly the same scan line (epipolar line) and a 
correspondence algorithm should be able to manipulate this kind of points. 
In second case, during construction and calibration the distance between mirrors (3) and (4) 
is regulated to be b/2+l. Then the result is a ray radiated from the optical center O to follow 
slightly different in length paths in two different directions. The magnification of the two 
virtual cameras is exactly the same and the displacement of the second virtual axis with 
respect to the optical axis of the real camera is b/2+m+l. In this case the construction and the 
calibration procedure requires the careful placement of mirrors (3) and (4). The correspon-
ding points are always found in the same scan line (epipolar line).  

4. Coordinates of a Random Point in 3D Space - Recalculation                    

To calculate the modified equations, giving the coordinates of a random point in 3D space, 
we solve the stereo problem using as cameras the two virtual cameras created by PSVS. 
Each of the above virtual cameras can be separately calibrated and the matrix A with the in-
trinsic parameters can be found. A right hand ortho-normal coordinate system with origin 
the optical center O of the real camera and Z-axis to coincide with the optical axis of the real 
camera is established (Fig. 5). The coordinates of a point P in space, with respect to this 
coordinate system, are expressed by the vector X=[x,y,z,1]T while the coordinates of optical 
centers O1 and O2 are provided from vectors XoL=[xoL,yoL,zoL]T and XoR=[xoR,yoR,zoR]T

respectively. Then, using matrix relations, the calculation of vectors mL=[uL,vL,1]T,
mR=[uR,vR,1]T in the image plane for each virtual camera of a point P is possible. Here, the 
assumption made, is that the two virtual cameras are parallel to the real camera as a result 
of PSVS mirrors alignment and checking procedure (Pachidis & Lygouras, 2002b). Thus, 
rotation matrices RoL, RoR describing the orientation of the virtual cameras with respect to 
the real camera are equal to the identified matrix I3x3. The calculation methodology provides 
equations giving the coordinates of a point in space, in a more general form. Then, special 
case studies concerning PSVS are examined. 

[ ] XXRAm oLoLLL ⋅−⋅⋅=  (13) 

[ ] XXRAm oRoRRR ⋅−⋅⋅=  (14) 
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Figure 5. In this figure the established ortho-normal coordinate system is illustrated 

Matrices AL, AR, (providing intrinsic parameters of cameras) as they are calculated, using the 
calibration method proposed by Z. Zhang (Zhang, 2000) , are of the form: 
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In the previous matrices, (uLo, vLo) and (uRo, vRo) are the coordinates of the principal points in 
each image view, 

Lua ,
Rua are the horizontal scale factors and 

Lva ,
Rva are the vertical scale 

factors. The parameters cL and cR describe the skew of the corresponding image axes. The 
mean value of parameters cL, cR is near zero, thus cL=cR=0. Making some multiplications 
from relations (13) and  (14) the following systems of equations are derived:  
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Where  is a parameter. By the solution of the previous systems the following equations, 
providing coordinates of a point in a 3D space are calculated: 
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To find the form of final equations, adapted to PSVS, some simplifications were made. These 
simplifications are: 
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Where the parallel displacement m and the shifting l (Fig. 4) due to refraction phenomena in 
mirror (1) are given from equations (11) and (12).  
Substituting the equal values from (21), equations (18-20), are simplified to: 
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Equations (22-24) are more simplified, if the origins of images from the two different views 
coincide and the scale factors horizontally and vertically are equal. Then the relations in (25), 
as result of mirrors alignment in PSVS and careful calibration of virtual cameras, are valid. 

oRoLooRoLo vvvuuu ==== , , uvLvRuuLuR aaaaaa ==== ,  (25) 

The simplified equations are: 

( )
22

1 buubz
a

x oR
u

+−⋅+⋅=  or ( ) mbuulbz
a

x oL
u

−−−⋅−+⋅=
22

1  (26) 



Pseudo Stereovision System (PSVS): A Monocular Mirror-based Stereovision System 317

( )oR
v

vvbz
a

y −⋅+⋅=
2

1   or ( )oL
v

vvlbz
a

y −⋅−+⋅=
2

1  (27) 

( ) ( )
2
b

uu
uulmbaz

RL

oLu −
−

−⋅++⋅=  (28) 

Equations (26-28) correspond to the first case of mirrors location and alignment as it is 
described in a previous section. According to the second case of mirrors location and 
alignment, equations (30-32) are derived. Coordinates of the optical centers O1 and O2 are 
given from the relations in (29): 
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According to the previous analysis, coordinates of the tracks of a point in 3D space, in a 
complex image, have different values along X-axis but the same values along Y-axis. Solving 
equations (27) or (31) in relation to Rv  and Lv , the difference RL vv −  represents the 
difference in coordinates of the tracks of a point P along Y-axis (Y disparity) respectively:   
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ayvv vRL   (a)      and 0=− RL vv   (b) (33) 

It is concluded that when the first set of equations is used (26-28) the two tracks of point P in 
the complex image are not found in the same line (33(a)). However, this deviation creates a 
measurement error less than one pixel, which it is decreased as the depth z is increased. 
Consequently, it is considered that 0≅− RL vv . When the second set of equations (30-32) is 
used (with the proper location and alignment of mirrors), the tracks of a point P are found in 
exactly the same scan line as the equation (33(b)) shows. 

5. Correspondence Algorithm - Basic Concepts                         

The proposed correspondence algorithm belongs in high-level feature-based algorithms and 
particularly in algorithms that can find correspondences in curves (Dhond & Aggarwal, 
1989) (Goulermas & Liatsis, 2001). It is based on the concept of seeds and it is executed in 
two stages. To implement the proposed correspondence algorithm, a complex image or a 
stereo pair of images are initially processed. In the application developed in Visual C++ 
(Pachidis et al., 2002), (Pachidis & Lygouras, 2006), (Pachidis et al., 2006), a variety of filters 
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and edge detection methods may be used. In the final edge images, the desired edges are 
selected as left view edges, in a semi-automatic procedure; i.e., by coloring a pixel manually 
and then by propagating the pixel to the whole edge. When all the desired edges are 
colored, with different color values, the corresponding edges are detected. In an automatic 
procedure, each left view edge is automatically selected first, the corresponding edge is 
detected and the whole procedure is repeated until all the pairs of corresponding edges are 
detected. Three criteria are used to select the corresponding edge: 
1. The horizontal upper and lower limits of the initial edge plus a small permissible 

deviation measured in pixels. 
2. The number of pixels in each initial edge extended by a predefined percentage of the 

initial number of pixels. 
3. The criterion of the most probable edge. According to this criterion, the most probable 

candidate edge corresponds to the maximum population of pixels at the same distance 
from the initial image. At this distance, at least one pixel of the candidate edge is 
detected. 

Using this algorithm the selection and processing of 11 independent edges or lines with 
different colors, of an image of the same scene, is possible. The results, namely, the color of 
points, their image plane coordinates and the disparities are stored in a matrix and at the 
same time in a file for future use. 
An example is illustrated in Fig. 6(a).  The color of the initial desired edge is on gray-scale. 
The other edges are excluded when the first two criteria are applied. Only one of them has 
the same upper and lower limits and a smaller number of pixels than the predefined one. 
For the application of the third criterion, seven points are automatically selected from the 
initial edge. After the criterion is applied, only one seed is found. This seed is propagated 
and the corresponding edge is created. Then, having implemented the second stage of the 
algorithm, the corresponding pairs of points are found. This mapping is illustrated with the 
parallel lines in Fig. 6(b). 

                                           (a)                    (b) 

Figure 6. The correspondence procedure is illustrated. a) In the first stage, seven points are 
selected for correspondence from the desired edge. Only one corresponding point was 
found. b) In the second stage, thirty corresponding pairs of points were found. Parallel lines 
show this mapping   
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6. Complex Image Separation and Stereo Images Reconstruction            

PSVS, as it was presented right here, could be successfully used to calculate coordinates of 
random points in space, as well as to find edge or point correspondences of objects in any 
depth. This system, contrary to other monocular systems, captures two different stereo 
views in a single shot and with accuracy in measurements better of previous systems 
because of the angular field of view. The disparity values, detected by the system for an 
object, are the same with an ordinary stereo system with two cameras. But PSVS is faster 
and cheaper than an ordinary stereo system (one camera, one frame grabber card, one shot, 
one image processing). Using a high frame rate camera could be used to any application 
needs a fast vision system. In systems, where accurate measurements are required, in small 
distances, it can be used with success. Our system was initially developed for an arc 
welding system where the camera and the torch are mounted on the end-effector of a 
PUMA robotic manipulator. In this application, the PSVS is near the torch and consequently 
scene views are simple. A plethora of robotic tasks and procedures can be successfully 
manipulated by using PSVS (Pachidis et al., 2005).  
When calculation of point locations in separated views of a scene is desirable, the separation 
of the complex image into a pair of stereo images is required. After their initial separation, 
the left and right images are reconstructed and can be processed as images of an ordinary 
stereo system. The complex image separation is examined in two cases. In the first case, a 
monochrome CCD camera is used. If (x,y)IR , (x,y)IL  and (x,y)IC  are functions of the right, 
left, and complex images respectively, then the intensity of each pixel of the complex image 
is given by: 

(x,y)k) I(1(x,y)k I(x,y)I LRC −+=  (34) 

where k (0<k<1) is the portion of the reflecting and the transmitting radiation from the 
beam-splitter. Here, k=0.5 (50% beam-splitter). In this case the intensities of the 
corresponding pixels of the right and left images are added and the separation of the 
complex image is not possible. Generally the intensities of the corresponding pixels of these 
sub-images, in each location, have different intensities.  

    
Figure 7. Complementary spatial filters 
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For the separation of a complex image into a pair of stereo images, the concept of “spatial 
filters” is introduced. With the term “spatial filters” we consider filters made from plastic 
film with specific form of transparent and black areas, i.e. chessboard like with squares, or 
rectangles, or parallel lines. The filter of one view must act complementary to the filter of the 
other view (Fig. 7). The size of still elements is determined to be equal or multiple of the 
apparent size of a pixel in the distance where the filters are mounted on the PSVS. The filters 
are mounted on the front view of PSVS creating this way shading areas to left and right sub-
images. As these images are superimposed, illuminated areas of the initial images create the 
complex image. For the separation of the complex image is required: 

1. Alignment of the spatial filters by means of the regulators adapted on the PSVS and the 
related software developed for this reason. 

2. Storage of the initial images (mask-images) captured by each view separately, in white 
background (white scene). In normal operation, these images are used for extraction of 
the pair of images from the complex image. 

Then, separation of a complex image into a pair of stereo images is possible by selecting 
from the complex image only pixels that their corresponding pixels to each mask-image 
pixels have intensities greater than zero. The intensity of each pixel of mask-images is 
defined as (x,y)IRM , (x,y)ILM , for the right and left image respectively. Then, the intensities 
of pixels of the right and left images are of the form: 

=
>

=
00
0

(x,y)Iif
(x,y)Iif(x,y)I

(x,y)I
RM

RMC
R  (35) 

=
>

=
00
0

(x,y)Iif
(x,y)Iif(x,y)I

(x,y)I
LM

LMC
L  (36) 

These images have black areas and areas with pixel intensities from only one view. For the 
reconstruction of these images, we borrow a concept and the related theory used in error 
recovery approaches for MPEG encoded video over Asynchronous transfer Mode (ATM) 
networks. From the proposed approaches, spatial error concealment has been adopted 
(Salama et al.,1995), (Salama, 1999), (Asbun & Delp, 1999). The method is used to reconstruct 
video images after their reception through the net. Because of the important percentage of 
black areas in the separated images, the above method, that is the estimation of missing 
blocks by using spatial interpolation, was modified and adapted to the requirements of this 
specific application.  
According to our method two new concepts were used. The first one is the estimation of 
each block’s start point (up and left pixel) as well as of the size of the block. Then the size of 
the block continuously changes as block pixels are reconstructed. The second concept is 
referred to the sequence each pixel in a block is examined. We propose a method, called “the 
Meander Method (MM)”, where pixels in a block are scanned from the start point to a block 
center pixel, following a circular path, so that a meander to be created (Fig. 8).  
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Figure 8. A typical block (black pixels) and a meander are depicted. With A and B, the 
reconstruction of two pixels from the adjacent non-black pixels is presented. 
MM is more efficient than simple spatial error concealment, permitting the reconstruction of 
variable size blocks with the block densities appeared to the separated images. If the block is 
restricted to one black pixel the new value of it is the mean value of the 4-neighbor pixels 
surrounding the pixel. If the coordinates of a start point in a block are (k, l) and the size of 
the block is nxo, the intensity of each black pixel is calculated by using the following 
equation:
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Where i, j are the variable indices in the block and  is a parameter that determines the 
number of terms. Factors, multiplying pixel intensities, determine the contribution of each 
term to the final intensity. 
When the whole image has been reconstructed, a proper smoothing filter is implemented to 
each image. The basic steps of the proposed algorithm are: 
1. Scan each image from the upper left corner and find the start point and size of each 

black area in the image according to a pre-specified threshold. 
2. Store the parameters in a matrix (start point location, n, o, dimension). 
3. For each shape, beginning from the start point, move right and down and replace the 

intensity of a black pixel with a new value, calculated from adjacent non black pixels. 
4. Repeat the procedure until all black pixels of the shape to be replaced by non-black 

pixels. 
5. Repeat steps 3 and 4 for all black pixels of shapes until the whole image to be 

reconstructed.
6. Apply a smoothing filter to each image of the pair of the reconstructed images. 
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A number of problems are encountered by trying to use this method. If the shape’s size is 
too small, diffusion of images and Moiré effects are observed and the complex image cannot 
be separated. From the other side if the shape’s size is large the separation of the complex 
image is possible but the reconstruction has as result low quality images. An important 
portion of the information is lost.  
In the second case for our study a simple color camera was used. For a color image, 

(x,y)IColor , let be (x,y)IRed , (x,y)IGreen  and (x,y)IBlue  the gray scale images derived from the color 
image by using the RGB model. The idea here is to filter the initial views by using dichroic 
red and blue filters in each input view of PSVS. These filters are mounted again on the front 
view of PSVS but no alignment is necessary. Then the color image will be: 

(x,y)k) I(1(x,y)k I(x,y)I(x,y)I BlueRedColorC −+==  (38) 

The red filter is placed in front of the left virtual camera and the blue filter in front of the 
right camera. The red filter operates as high pass filter with frequency f>600nm where the 
blue filter behaves as a low pass filter with frequency f<500nm. Then by splitting the color 
complex image captured by PSVS the left as red and the right as blue image of a stereo pair 
of images are created. Because of the frequencies cut of the previous filters a small portion of 
the green image might be appeared. Using this method, problems can be created if there are 
reflections on filters. Problems could also be created if the filters used have a common area 
in spectra. In such a case the complex image is not completely separated. The gray scale 
images, generated by the above method can be directly used for processing. However, if it is 
necessary to have gray scale images with normal distribution of pixel intensities, as it 
happens when a single camera captures a gray scale image, pixel intensities of the generated 
image could be replaced by new pixel intensities by means of an intensity map. This map 
might be created taking into consideration pixel intensity changes after their filtering 
through a color filter (here red and blue). 
If a monochrome camera and the previous color filters are used then the separation is 
possible for simple scenes using histogram functions. The separation could be made because 
the effect of these filters to gray scale images is to emphasize some colors more than others.  

7. Experimental Results                 

In experimental results presented in this section, PSVS is mounted on the end-effector of a 
PUMA 761 robotic manipulator or on an aluminum tube. Depending on the experiment, two 
Pulnix monochrome cameras, models TM-520 and TM-6705, two parallel IEEE-1394 
(firewire) cameras composing a stereovision system, as well as a typical color camera for the 
reception of color images are used. The first case of mirrors alignment is examined. The 
whole procedure is supported by two personal computers, running Windows. In the first 
computer, at 350 MHz, the developed robotic software application, called HumanPT, is 
installed. An important number of operations and applications can be executed by means of 
HumanPT (i.e. high level robot control, visual servo control, image processing, 
communication, calibration, e.t.c.). In the second computer, at 700 MHz, a small part of 
HumanPT is installed (Pachidis et al., 2006). This part is responsible for the reliable and 
stable communication of the computer (server) with the robot controller through ALTER 
communication port at 38400 bps and with the first computer (client) through Ethernet.  
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7.1 Examples of Complex Images                                

Images of Fig. 9 are captured by means of PSVS from the environment of a PUMA 761 
robotic manipulator. Images are referred to simple scenes, where the two views are 
separately appeared and to more complicated scenes where the different views of objects are 
superimposed.

 (a)   (b) 

(c)   (d) 

Figure 9. (a) Simple complex image captured by means of PSVS (b) One image where the 
overlapping of the ashtrays is shown. (c) (d) Images of complex scenes are presented

7.2 Measurements Accuracy                     

To test the accuracy in measurement for different distances, a pattern with circular areas is 
used. Distances between the centers of the circular areas are 20 mm and their diameters are 
10 mm. The manipulator is moving, along the world coordinate system Z-axis (axis of the 
world coordinate system, established on the robot), 50 mm each time. 
Totally, sixteen complex images are captured by means of PSVS (Fig. 10). After the initial 
processing of these images (filtering, conversion to binary, Roberts edge detection), 
geometric centers of two circular areas per image are found. The measured and the 
calculated distance in mm and the distance error in mm with respect to the calculated depth 
z are illustrated in Fig. 11(a) and (b) respectively. 
As a second experiment the complex image of a pair of pliers is processed (Fig. 12(a)). After 
the initial processing (mean filtering, conversion to binary image, median filtering, Roberts 
edge detection) and the implementation of the correspondence algorithm, image coordinates 
of 500 points for this pair of pliers, are calculated. The disparity map is illustrated in Fig. 
12(b).



Scene Reconstruction, Pose Estimation and Tracking 324

Figure 10. Complex images captured by means of PSVS, from different distances 

                                      (a)                                                                            (b) 
Figure 11. a) Distance Measured and Calculated vs. Depth z. b) Distance Error vs. Depth z
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                           (a)                                                                              (b) 

Figure 12. a) The complex image of pair of pliers. b) The disparity map 

7.3 Comparison With Other Systems                            

To compare the performance of PSVS with respect to a standard stereovision system and to 
have the same measure, two parallel IEEE-1394 (firewire) cameras are used composing a 
stereovision system. The baseline length b of this vision system is again 10 cm (as PSVS). 
This stereovision system is calibrated (Zhang, 2000) and (Zhuang et al., 1994). The stereo 
system is mounted on a square profile 8x8 cm aluminum tube two meters long. Along this 
tube a target similar with this of Fig. 13(a), mounted on a specially constructed thick 
aluminum base, can be accurately moved. Stereo pair of images are acquired every 100 mm 
from 500 to 1900 mm. The experiment is repeated using one camera in the same location 
with respect to Z-axis and PSV apparatus instead of the stereovision system. Complex 
images are captured again every 100 mm. Images acquired by means of the two vision 
system are processed using the proposed correspondence algorithm. In each case, the depth 
z is calculated and the results of errors are illustrated in Fig. 14. 

              
                                                        (a)                                    (b) 

Figure 13. (a) The original pattern  (b) A sample of complex images 
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Figure 14. Errors measured with respect to the real distance of each vision system from the 
target
Comparing the results in Fig. 14 it is realized that a) the accuracy of PSVS is much better 
than the accuracy of the standard stereo vision system along Z- axis, b) PSVS can measure in 
smaller distances (smaller blind zone). Moreover cameras parallelism was a difficult 
procedure (that is why rectification in a stereo pair of images is usually implemented 
increasing the computational cost) and a computer is always necessary for the alignment of 
cameras while alignment of PSVS mirrors is possible (when it is necessary) by means of a 
simple laser beam. Comparing with the results presented in papers (Teoh & Zhang, 1984), 
(Lee et al., 1999) and (Lee & Kweon, 2000), results in Fig. 14 are more accurate also. 

7.4 Complex Images Separation              

7.4.1 Monochrome Camera and Spatial Filters                   

In this part of experimental results the procedure of the separation of a complex image by 
using a monochrome camera and spatial filters is presented. The filters used are of the form 
of Fig. 7. The dimension of each square in the spatial filters is 2X2 mm. These filters, first, are 
carefully aligned. The alignment is made by means of a part of the software application 
HumanPT (http://users.otenet.gr/~pated). During the alignment, the scene (the back-
ground) is white. Thus, images captured from PSVS, by means of spatial filters, contain only 
spatial information. When the alignment is completed the captured image must be an 
almost white image of the area of interest. Then, the right side of the apparatus is closed and 
an image is captured. This image contains information only for the left filter. The same 
procedure is repeated for the left side and an image containing information for the right 
filter is captured. These two initial images are stored. Following the above steps the system 
is ready to separate a complex image.  
An example of this procedure in case of PSVS is illustrated in Fig. 15. In this example, 
mirrors are not completely regulated but for the separation, the two spatial filters are 
carefully aligned. The pair of images can be reconstructed by using the theory of section 6. 
The results are illustrated in Fig. 16. As smoothing filter a median filter is used. 
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                                        (a)                                  (b)                                  (c) 

Figure 15. Complex image separation a) The complex image b) The left view (right image) c) 
The right view (left image) 

                     (a)                                  (b)                                  (c)                                  (d) 

Figure 16. Complex image reconstruction and smoothing a), b) images reconstruction, c), d) 
Filtering with a median filter 

Figure 17. Complex color images separation 
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7.4.2 Color Camera and Color Filters       

To separate an image by using a color camera, as it mentioned previously, blue and red 
dichroic filters are mounted on the apparatus closing this way the front area of PSVS. No 
alignment is necessary and the apparatus is ready to capture images.  
The complex image is the superposition of a “red” and a “blue” image. The separation of 
two complex images captured by means of PSVS and using a color camera is illustrated in 
Fig. 17. Some areas in the new images, as result of color filtering, are emphasized. However, 
these images can be used as they are for processing.  

8. Conclusions and Future Plans                     

A system for stereovision based on mirrors and a beam-splitter, was presented. PSVS, as it is 
called, is a low cost system with well-located features (accuracy, stability, compact constru-
ction). Equations and relations, concerning its construction and calculation of points 
coordinates in 3D space, taking into consideration refraction phenomena due to beam-
splitter, were derived. Keeping always in mind the low construction cost and the possibility 
to easy constructed and used by anyone, new methods were introduced. These methods 
concern the correspondence algorithm used complex images separation and stereoscopic 
images reconstruction. Some problems during separation and reconstruction of images were 
explained. However, more research for this issue is required (i.e. integration of a spatial 
filter on a beam-splitter). The PSVS, as it is obvious from the experimental results can be 
successfully used for robotic applications. It was successfully used in different tasks, 
methods for robot path generation and stereo visual servo control. Moreover, it can be used 
to measure in space (to measure big distances) or in underwater applications.  
Our future plans include implementation of PSVS in more robotic applications, the 
development of a new PSVS calibration method, the improvement of complex images 
separation method. They also include the construction of different in size PSVS devices that 
could accurately measure ultra small distances in the micro world or distances in space. 
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1. Introduction  

It is widely accepted that skin-color is an effective and robust cue for face detection, 
localization and visual tracking. Well-known methods of color modeling, such as 
histograms and Gaussian mixture models enable creation of appropriately exact and fast 
detectors of skin. In particular, skin color-based methods are robust to changes in scale, 
resolution and partial occlusion. In real scenarios an object undergoing tracking may be 
shadowed by other objects or even by the object itself. However, many color-based tracking 
approaches assume controlled lighting. These methods construct or learn models in advance 
and then use them in tracking, without adaptation to suit new conditions. Consequently, 
these techniques usually fail or have significant drifts after some period of time, mainly due 
to variation of lighting in the surrounding. Thus, such techniques are not as good as can be 
for use in real environments because skin-color perceived by a camera usually changes 
when the lighting conditions vary. Therefore, for reliable detection of skin pixels a dynamic 
color model that can cope with nonstationary skin-color distribution over time should be 
applied in vision systems. Two types of information are typically used to perform 
segmentation during face tracking. The first is color information (Bradski, 1998; Comaniciu 
et al., 2000; Fieguth & Terzopoulos, 1997; Perez et al., 2002; Sobottka & Pitas, 1996). The 
second is the geometric configuration of the face shape (Chen et al., 2002). It is often not easy 
to separate skin colored objects from non-skin objects like wood, which can appear to be 
skin colored. Therefore, both skin-color modeling and contours are used to separate the 
facial region undergoing tracking (Birchfield, 1998). The oval shape of the head is often 
approximated by an ellipse (Birchfield, 1998; Srisuk et al., 2001). To cope with varying 
illumination conditions the color model is accommodated over time using the past color 
distribution and newly extracted distribution from the ellipse's interior. However, such 
tracker pays little attention to what lies inside the ellipse and what is utilized to 
accommodate the color model. The kernel density-based tracking has recently emerged as 
robust and accurate method due to its robustness to appearance variations and its low 
computational complexity (Bradski, 1998; Comaniciu et al., 2000; Perez et al., 2002). Due to 
the use of a simple pixel-based representation as well as reduced adaptation capabilities of 
Mean-Shift methods the algorithm performs poorly under large illumination change.  
Updating the color model is one of the crucial issues in color-based tracking. A technique for 
color model adaptation was addressed in (Raja et al. 1998). A Gaussian mixture model was 
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used to represent the color distribution and the linear extrapolation was utilized to adapt 
the model parameters via a set of labeled training data from a subimage within the 
bounding box. A non-parametric method that in histogram adaptation employs only pixels 
which fall in the skin locus was proposed in work (Soriano et al., 2003a). In work (Sigal et 
al., 2000) the modeling of the color distribution over time is realized through predictive 
histogram adaptation. Histograms are dynamically updated using affine transformations, 
warping and resampling. The pixel-wise skin color segmentation is often not sufficient to 
select the pixels for adaptation of a color model because pixels in the image background 
may also have colors similar with skin colors and this can then lead to over-segmentation. 
Another issue which should be taken into account is that nearby pixel from skin-colored 
background may blend with the true skin regions and this can have an adverse effect on 
subsequent processing of skin regions. The adaptive skin-color filter (Cho et al., 2001) 
performs initial skin candidate detection at the beginning and then more accurate tuning of 
a skin model takes place. The adaptation takes into account the skin-like background colors. 
The method uses the HSV color space in which the H coordinates are additionally shifted by 
0.5. A comparative study of four state-of-the-art techniques of skin detection under 
changing illumination conditions can be found in (Soriano et al., 2003b). 
A few attempts have been proposed to track objects under large change in illumination 
(Hager & Belhumeur, 1996; La Cascia et al., 2000). These algorithms follow the same idea 
consisting in the usage of a low dimensional linear subspace to approximate the space of all 
feasible views of the object under different lighting conditions. To perform the tracking one 
needs to construct the basis images from a set of images collected at fixed pose under 
different lighting conditions. 
The key idea of the proposed approach is an improved selection of pixels to determine the 
parameters of models expressing the evolution of skin color over time. Even when a 
background region situated close to a face region has skin colored pixels, there always exists 
a boundary between the true skin region and the background. Our aim is to delineate such a 
boundary under varying illumination conditions by means of Active Shape Models. In 
context of dealing with skin-color segmentation under time varying illumination the Gabor 
filters are particularly useful as they are robust to variability in images arising due to 
variation in lighting and contrast. Active Shape Models (ASM) were originally proposed by 
Cootes (Cootes, 2000). They allow for considerable variability of instances of models 
represented in a subspace spanned by eigenvectors. 
The algorithm for segmenting and tracking a face in a sequence of color images enables 
reliable segmentation of facial region during face tracking despite variation of skin-color 
perceived by a camera. A second order Markov model is utilized to forecast the skin 
distribution of facial regions in the next frame. The histograms that are constructed from the 
predicted distribution are backprojected to generate candidates of facial regions. The 
detected skin-colored regions are then refined with regard to spatio-temporal coherence. 
The algorithm reviews the image focusing the action around the location of the face in the 
previous frame. In particular, the connected component analysis is applied in the binary 
image to label separate regions. Spatial morphological operations for hole and object size 
filtering are used afterwards. Using prior knowledge about the target shape the Active 
Shape Model seeks to match a set of model points to the image. While interpreting the 
image contents we employ statistical shape models built on intensity gradients, distance 
between color of pixels in subsequent frames and the phase of Gabor filter responses. In the 
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first iteration we always utilize the distance to the edge of extracted in advance facial mask 
to find a plausible starting configuration. The coherence score between corresponding 
characteristic points, which is determined using phase of the Gabor filter responses, 
improves considerably the tracking capabilities of the method. The outcome is a shape fitted 
to the tracked face. 
The user only needs to initialize the tracker in the first frame. After a fixed number of frames 
the tracker automatically switches from tracking with the learning phase to the model-based 
tracking. A second order Markov model is applied to predict the evolution of colors of skin 
pixels, gathered within shape interiors in certain number of the last frames. During the 
tracking, the matching are not performed between only image pairs, but also between the 
current frame and the shape model. The accommodation of the skin histogram over time 
takes place on the basis of feedback from shape, newly classified skin pixels and predictions 
of the skin color evolution. 
The following section briefly outlines some topics related to statistical shape models. The 
details of the shape alignment are given in Section 3. Section 4 describes how the Active 
Shape Model is used in our system to conduct tracking and to support the skin 
segmentation. It presents in detail all ingredients of our ASM-based tracker and reports 
results, which were obtained in experiments with various cues. The model of skin colors and 
their evolution is described in Section 5. Experiments conducted in varying illumination are 
described as well.  

2. Point Distribution Model  

The method for segmentation and tracking of facial regions, which is presented in this 
chapter utilizes the statistical shape models. A shape model is utilized to constrain the 
configuration of a set of candidate skin pixels. An efficient algorithm allows the detection of 
facial pixels to be tested and verified. Thus, it deals with failures of a skin detector. The non-
skin pixels that are placed outside of the shape are not considered in the skin-color model. 
During shape guided verification of the facial region a set of candidate skin pixels is 
inspected using shape constraints in two ways. Firstly, a shape model is fitted to the 
candidate facial region. Secondly, limits are prescribed on the position, orientation and scale 
of a set of candidate skin pixels relative to the position, orientation and scale according to 
their values from the last frame. The aim is to extract pixels belonging only to the tracked 
face, using the candidate facial mask, intensity gradient, coherence of the phase of Gabor 
filter responses, and the shape constraints. The facial mask is generated from a skin 
probability image. The skin probability image is extracted on the basis of a skin histogram 
that is accommodated over time. There are two broad approaches for representing a two-
dimensional shape: region-based and contour-based. The region-based methods encode the 
place occupied by the object through a mask. The methods belonging to this group are 
sensitive to noise and they cannot cope with partly obscured objects. In contour-based 
approach the boundary of the object is modeled as an outline. Therefore, such methods can 
better deal with partially obscured objects and partial occlusions. A contour-based model 
can be built by placing landmark markers on distinctive features and at some pixels in 
between. The contour-based instances are usually normalized to canonical scale, translation 
and rotation in order to make possible comparison among distinct shapes. A distance 
between corresponding points from the two normalized shapes can be utilized to express 
the similarity between them.  
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Active Shape Models (ASMs or smart snakes) were originally designed as a method for 
locating given shapes or outlines within images (Cootes, 2003). An ASM-based procedure 
starts with the base shape, approximately aligned to the object, iteratively distorts it and 
refines its pose to obtain a better fit. It seeks to minimize the distance between model points 
and the corresponding pixels found in the image. A shape consisting of n points can be 
considered as one data point in 2n -dimensional space. A classical statistical method for 
dealing with redundancy in multivariate data is the principal component analysis (PCA). 
PCA determines the principal axes of a cloud of npoints at locations xi . The principal axes,  
explaining the principal variation of the shapes, compose an orthonormal basis ={p1, p2,..., 

pn}  of the covariance matrix . It can be shown that the variance 
across the axis corresponding to the i-th eigenvalue i equals the eigenvalue itself. By 
deforming the mean shape , using a linear combination of eigenvectors , weighted by so-
called modal deformation parameters b, we can generate an instance of the shape. 
Therefore, the new shape can be expressed in the following manner: . By varying 
the elements of b we can modify the shape. By applying constraints we ensure that the 
generated shape is similar to the mean shape from the  original training data. Through 
applying limits of to each element bi of b, where i is the variance of the i - th 
parameter bi , we can operate on plausible values of b. The deformation of the shape is 
constrained to a subspace spanned by a few eigenvectors  corresponding to the largest 
eigenvalues. We can achieve a trade-off between the constraints on the shape and the model 
representation by varying the number of eigenvectors. If all principal components are 
employed, ASM can represent any shape and no prior knowledge about the shape is 
utilized.  

3. Shape Alignment

Given two 2D shapes, x1 and x2 our aim is to determine the parameters of a transformation 
T, which, when applied to x2 can best align it with x1 with one-to-one point correspondence. 
During alignment we utilize an alignment metric that is defined as the weighted sum of the 
squares of the distances between corresponding points on the considered shapes. Thus we 
seek to choose the parameters t of the transformation T to minimize:  

(1)

where W is a diagonal matrix of weights {w1, w2,..., wn}. Expressing Tt in the following form:  

(2)

and denoting ax =s cos( ), ay =s sin( )  we can rewrite (1) in the following form:  

. The error E assumes a minimal 
value when all the partial derivatives are zero. Differentiating the last  equation with regard 
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to ax we obtain: . Diferentiating w.r.t.
remaining parameters and equating to zero gives:  

(3)

where
. The parameters tx , ty , ax and ay constitute a solution  which 

best aligns the shapes. An iterative approach to find the minimum of square distances 
between corresponding model and image points is as follows (Cootes, 2003):  
1. Initialize shape parameter b to zero.  
2. Generate the model instance .
3. Find the pose parameters using (3), which best map x to Y.
4. Invert the pose parameters and then use to project image pixels Y into the model co-

ordinate frame: .
5. Project y into the tangent plane to  through scaling it by .

6. Update b to match y  as follows: .
7. If not converged, repeat starting from 2.  

4. Active Shape Model-Based Tracking  

Tracking can be perceived as a problem of assigning consistent labels to objects being 
tracked. This is done through maintaining the observations of objects in order to label these 
so that all observations of a given object in a sequence of images are given the identical label. 
During shape aligning our algorithm reviews the binary image focusing the action around 
the pose that has been determined in the previous frame. The algorithm requires that there 
is an overlap between the image region occupied by the object in the previous iteration and 
the new object region. Such an assumption is utilized in Mean-Shift trackers (Bradski, 1998; 
Comaniciu et al. 2000), which require significant overlap on the target kernels in consequent 
frames. In our system limits are prescribed on the position, orientation and scale of the 
target according to their values in the last frame. The binary image is generated prior to 
shape fitting on the basis of the skin histogram that is accommodated over time. 
The standard ASM aligns the shape model to outlines in an image using only contours. It 
works well on images with consistent shape and appearance. It requires good initialization 
and is inadequate when the shape variations are highly non-linear. To cope with such 
constraints we initialize the locating of the face in each frame by the use of the binary mask. 
Its boundary indicates a rough location as well as shape of the face. In work (Koschan et al., 
2003) an incorporation of color cues into the ASM framework has been proposed. However, 
the mentioned approach does not apply color segmentation. It is based on the minimization 
of energy functions in the color components. Therefore it admits of only a small change in 
illumination between two successive frames.  



Scene Reconstruction, Pose Estimation and Tracking 336

Fig. 1. demonstrates the performance of the ASM attempting to match the head model to a 
given binary mask that has been extracted on the basis of color model. To demonstrate the 
usefulness of statistical shape models in tracking two artifacts at the left and the right side of 
face border have been manually added. Despite large deformation of the shape outline we 
can observe how precisely the algorithm can align the shape to such a face mask. The shape 
on the left is the base shape in the initial pose that has been utilized in depicted shape 
alignment. This figure exemplifies also how the statistical shape models can support the 
selection of pixels for color model adaptation and thus the prediction of skin evolution over 
time.

Fig. 1. Shape alignment in presence of manually added artifacts to extracted facial mask. 

The shape model has been prepared on the basis of 10 manually segmented images with 
frontal faces, each represented by 30 characteristic points. The faces have been normalized 
with regard to orientation and size in order to obtain a set of points with similar physical 
correspondence across the training collection. All training faces were manually aligned by 
eye position. 
The oval shape of the head can be reasonably well approximated by an ellipse. During 
preparing the statistical model of the head shape the model shapes are normalized by 
aligning the average shape to a fixed circle of landmark points. Such an approach has the 
advantage that the model can be scaled to a needed size via setting only the size of the circle. 
The pose of the shape during the tracking is determined on the basis of the distance to the 
edge of face mask, intensity gradient near the edge of the outline, matching score of colors 
from the candidate outline and from the outline determined in the previous iteration, and 
phase of the Gabor filter responses. In the following subsections we present how each of the 
mentioned above cues contributes to the cost function that is calculated during searching for 
the best fit to the tracked face.  

4.1. Distance to the Edge of the Facial Mask  

In work (Isard & Blake, 1996) a search for the edges in direction perpendicular to the shape 
border has been shown as optimal. Therefore, a search for the points along profiles normal 
to the shape border is employed in our system. Fig. 2. demonstrates sample shape and 
location of the normals corresponding to characteristic points of our face representation.  
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Fig. 2. The location of the normals to base shape.  

Fig. 3. shows some shapes that were determined using the distance to the edge of the binary 
mask undergoing fitting. The binary images indicating skin color like areas were extracted 
on the basis of histograms accommodated over time. The experiments were conducted in 
home/office environment in front of wooden doors and a piece of furniture.  

Fig. 3. ASM-based face tracking using distance to the edge of the face mask. Frames #1, #2, 
#20, #40, #60, #80, #100 and #120 (from left to right and from top to bottom). Left images in 
the pairs are binary ones, whereas right images depict the outlines fitted to the face.  
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The candidates of facial region are extracted on the basis of histograms modeling the 
distribution of skin color. Histograms are accommodated over time from newly classified 
skin pixels and predictions of the skin-color evolution. The backprojected histograms are 
employed to generate binary images. Such images are then used in determining the 
connected components. Spatial morphological operations, such as size and hole filtering are 
employed next. Using the location of the face in the previous frame, a single binary 
component is extracted finally. The Active Shape Model seeks to match a set of model points 
to such a facial mask. In the images shown above we can perceive that only the usage of 
distance to the edge of the mask can lead to shapes that are well fitted to the face. The 
results demonstrate that the mask can be very useful in the initialization of the shape fitting.  

4.2. Intensity Gradient  

Figure 4 demonstrates some results that were achieved using intensity gradient while shape 
fitting to the tracked face. We apply the binary mask in the first iteration that initializes the 
matching of the set of model points to the edges. The gradient magnitude is calculated on 
the basis of the Sobel mask. The filtering with Gaussian mask precedes the extraction of the 
intensity gradient. The search is done along lines perpendicular to the shape.  

Fig. 4. ASM-based face tracking, using gradient. Frames #1, #2, #20, #60, #80, #100, #120. 
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Comparing the extracted shapes at Fig. 3. and Fig. 4. we can observe that the shapes 
generated on the basis of intensity gradient tend to fit the upper part of the person’s head. 
Such an effect occurs because the strongest edge is not always the object edge. The number 
of pixels indicating skin like areas in the background is slightly larger in images shown in 
Fig. 4.  

4.3. Intensity Gradient and Color  

As demonstrated in (Birchfield, 1998), the contour cues combined with color can be very 
useful to distinguish the tracked head when both a model of the color distribution and the 
elliptical model are accommodated over time. When the contour information is poor or is 
temporary unavailable, color information can be very useful alternative to extract the 
tracked object. Some tracking results that were obtained using color and intensity gradient 
cues are depicted in Fig. 5. As in previous experiments, the searching starts from the final 
location in the previous frame and proceeds iteratively to find the best fit of the shape to the 
face. In the first iteration the distance to the edge of the face mask is employed. The 
incorporation of information about the temporal coherence of color results in tracking with 
small shape’s jumps, even in the presence of skin like colors in the background.  

Fig. 5. ASM-based face tracking using intensity gradient and color. Frames #1, #2, #20, #40, 
#60, #80, #100 and #120.  



Scene Reconstruction, Pose Estimation and Tracking 340

4.4. Phase of Gabor Filter Responses

In order to improve further the quality of shape fitting we exploit Gabor filter responses. 
This choice is biologically motivated since it has been shown that they model the response 
the human cortical cells, which are both orientation and frequency selective. In context of 
dealing with skin-color segmentation under time varying illumination, the Gabor filters can 
be particularly useful as they are robust to variability in images arising due to variation in 
lighting and contrast. 
A 2-D Gabor filter is created by modulating a 2-D sine wave with a Gaussian envelope. The 
2-D kernel of the Gabor filter is given by:  

(4)

where x and y  denote the standard deviations of the Gaussian envelope along the x  and y,
respectively, whereas  and  are the wavelength and orientation of the 2-D sine  wave, 
respectively. The spread of the envelope is determined via the sine wavelength  . k is

defined as follows: , where k =1, 2,..., n and n represents the number of the 
considered orientations.The Gabor filter response is calculated by convolving the filter 
kernel specified by k and  with the gray-level image I : 

(5)

Fig. 6. shows the real part of Gabor filtered images. The images show the advantages of 
multiscale image representation-based on Gabor functions in feature matching. In results 
shown here, we have used four scales and four orientations in representing the landmark 
points. In our system we employ the efficient Gabor filter implementation of Nestares 
(Nestares et al., 1998). This pyramidal multiscale Gabor transform that allows very efficient 
implementation in the spatial domain is faster than conventional FFT implementations. 
Given a characteristic point of our shape model we are interested in a correspondence score 
between the considered pixel at the normal and the corresponding pixel that has been 
acquired at the initial outline. Such a correspondence score can be estimated using the phase 
of the Gabor filter responses. Suppose that for a Gabor filter with orientation  and 
wavelength  the phase at a point xt is . Given a response of a single filter the similarity 

between points xt and x1 is proportional to . The  matching score 
between points xt and x1 can be computed in the following manner:  

(6)

where Ch is a normalization constant ensuring that G varies between 0 and 1. By adding  1 to 
each factor during multiplication we limit the predominance of a single filter in the filter 
outcome.
Fig. 7. illustrates the coherence score between the landmark points that were acquired from 
the shape in the first frame and pixels from the frame #10. For visualization purposes a face 
subimage is included in the probability image. The brighter the pixel representing 
probability is, the higher is the coherence probability. The images demonstrate the 
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usefulness of phase in precise alignment the shape to the facial landmarks. The location of 
the landmark points for which the coherence probability has been computed can be found at 
Fig. 8c. 
To achieve a better fit of the model shape to image data the method elaborated by (Cootes, 
2000) uses searching profiles. Within such profiles this method looks for a sub-profile with 
statistics that best match the training profile. A representation of the training profile of each 
landmark is constructed off-line using a collection of the gray level values along the search 
profiles. The best match is determined by searching for a sub-profile for which a square 
error function takes the minimal value. The searching starts at the top level of the multi-
resolution pyramid and continues at the lover level using the search outcome of the 
previous level. However, this method is sensitive to changes in illumination. One of the 
main advantages of our method is its robustness to variations in illumination and contrast. 
Our method does not require an off-line training stage and takes also the advantages of 
multiresolution analysis.  

Fig. 6. Gabor decomposition of the test image. 
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Fig. 7. Gabor filter-based coherence score between the pixels located at landmark points of 
the shape fitted to face in frame #1 and image pixels from frame #10.  

The initialization of the tracker begins with a separation of skin and non-skin colors, see Fig. 
8a, using a database of skin and non-skin pixels. The face mask obtained in such a way is 
utilized to determine the initial pose of the base shape, see Fig. 8b. Experiments 
demonstrated that such a rough initialization is sufficient to conduct successful tracking in 
typical scenarios. Good choices for reference pixels to compute the phase score are points at 
corners or borderlines. Pixels located at the borderline between the shirt and the face are 
examples of such pixels too. Therefore, after the automatic determination of the shape pose 
we manually correct the pose of the shape in order to place some of the landmark points of 
the shape at mentioned above points. Fig. 8c illustrates a typical fit of the base shape to the 
face after manual correction of the pose. It has been obtained through clock-wise rotation of 
the shape depicted in Fig. 8b. Although our algorithm does not require very precise 
initialization, a far more precise initial fit of the shape to the face can be obtained. In case of 
such a need our graphical interface provides sufficient support and flexibility. For example, 
we can choose a mode of variation and its weight and then visualize the generated shape. In 
particular, thanks to such functionality we can determine the number of eigenvalues that are 
needed to approximate any tracking example within a given accuracy. After specifying the 
max weight and step we can animate the deformations of the shape in front of the face. This 
helps in selecting a set of parameters preventing the algorithm from convergence to an 
unrealistic shape. In another option of the program, through a specification of the weight for 
each mode we can observe deformation of the shape and its fit to the face. The mentioned 
above functionality acknowledged also its usefulness at the training stage.  

Fig. 8. Initialisation of the tracker.  

Fig. 9. illustrates some tracking results that were obtained using the distance to the edge of 
mask, the intensity gradient and the phase coherence. Through this sequence we want to 
highlight an improved fit of the shape to the face while the tracking. Comparing images 
from this figure with corresponding images from Fig. 3.-5. we can notice that thanks to 
Gabor filter responses, the upper part of the shape is located almost in all frames at the 
border between the face and hairs of the person’s head. A similar effect consisting in a close 
location of the bottom part of the outline to the face-shirt boundary can also be observed. 
The accuracy of locating the boundary of the face is constrained by the assumed shape 
model.  
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Fig. 9. ASM-based face tracking using the distance to the edge of face mask, intensity 
gradient and coherence of the phase. Frames #1, #2, #20, #40, #60, #80, #100 and #120.  

In the experiments described above we used two modes to approximate the oval shape of 
the human head. We constructed also shape models with increasing number of modes in 
order to test their ability to approximate the outline of the face as well as their ability to 
generalize. The shapes we can obtain arise via linear combinations of the shapes seen in a 
training set. Thus, the examples of the training repository have also an influence on the 
approximation as well as generalization capabilities. Some results from the tracking 
experiments using four modes are presented in Fig. 10. An improved fit to the face can be 
observed. Our experimental findings show that the 2-3 nodes provide sufficient 
approximation having on regard comparable face sizes in the image. The model employed 
in this work has been utilized in our former work (Kwolek, 2006). It has been prepared on 
the basis of images not containing the faces from the presented here test sequences. A very 
simple model built on landmark points constituting a shape like an egg can be sufficient to 
approximate the oval shape of the head in many tracking scenarios. The number of 
landmark points can be smaller as well. The model parameterized by the number of 
landmarks, which we decided to use in our experiments provides sufficient approximation 
for faces occupying larger areas of image.  
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Fig. 10. ASM-based face tracking using distance to the edge of the face mask, intensity 
gradient and coherence of the phase. The number of modes is set to four. Each 10-th frame 
of 120  frames long sequence is presented. 

The presented above experimental results were achieved using 10 iterations and they were 
conducted in front of wooden doors and a piece of furniture. Large shape deformations are 
made in the first few iterations, which give the scale and shape roughly correct, see Fig. 11b-
d. While the searching progresses the deformations are smaller. Fig. 11c demonstrates the 
shape in first iteration, whereas Fig. 11d shows shapes in 9-th and 10-th iteration, 
respectively. The images depict also how the statistical shape models can support the 
selection of pixels for adaptation of the skin model. The skin-color based image 
segmentation under time-varying illumination is described in next section.  

Fig. 11. Examples of search. Input and binary images (a). Process of searching (b-d). 
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5. Skin Color Segmentation under Time-Varying Illumination  

The face detection scheme within tracking framework must operate flexibly and reliably 
regardless of lighting conditions, background clutter in the image, as well as variations in 
face position, scale, pose and expression. Some tracking applications, for example using a 
moving camera, do require good detection rates even in case of abrupt changes of 
illumination. Fast and reliable face segmentation techniques in image sequences are highly 
desirable capability for many vision systems. Skin color-based detection methods are 
independent to scale, resolution and to some degree of face orientation in the image. A 
problem with robust detection of skin pixels arises under varying lighting conditions. The 
same skin patch can look like two different patches under two different conditions. An 
important issue for any skin-color based tracking system is to provide an accommodation 
mechanism which could cope with varying illumination conditions that may occur during 
tracking. In our approach, color distributions are estimated over time and then are predicted 
under the assumption that lighting conditions vary smoothly over time. The prediction is 
used to reflect the changing tendency in appearance of the object being tracked. A ground-
truth is an evident need during adapting a color model over time to changing illumination 
conditions (Raja et al., 1998). In this approach the evolution of distribution is constrained via 
statistical shape model and skin locus mechanism. In work (Sigal et al., 2000) the current 
segmentation and predictions of Markov model were applied to provide a feedback for 
accommodation. In other work (Raja et al., 1998) the accommodation process is controlled 
via mechanism for detecting errors accompanying tracking. 
One significant element that should be considered while constructing a statistical model of 
skin color is the choice of color space. One of the advantages of the HSV color space is that it 
yields minimum overlap between skin and non-skin distributions. Hue is invariant to 
certain types of highlights, shadows and shading. A shadow cast does not change 
significantly the hue color component. It decreases mainly the illumination component and 
changes the saturation. This color space was utilized in several face detection systems (Raja 
et al., 1998; Sigal et al., 2000; Sobottka & Pitas, 1996). The only disadvantage of the HSI color 
space is the costly conversion from the RGB color space. We handled this problem by using 
lookup tables. The histogram is the oldest and most broadly employed non-parametric 
density estimator. In the standard form it is computed by counting the number of pixels that 
have given color in region of interest. This operation allows alike colors to be clustered into 
the separate bin. The quantization into bins reduces the memory and computational 
requirements. Due to their statistical nature the color histograms can only reflect the content 
of images in a limited way (Swain & Ballard, 1991). Therefore, such representation of color 
densities is tolerant to noise. Histogram-based techniques are effective only when the 
number of bins can be kept relatively low and when sufficient data are in disposal (Raja et 
al., 1998). One of the drawbacks of the histogram-based density estimation is the lack of 
convergence to the true density if the data set is small. In certain applications, the color 
histograms are invariant to object translations and rotations. They vary slowly under change 
of angle of view and with change in scale.  

The target is represented by the set , where N is the number of pixels and ui

denotes vector with HSV components of the i -th pixel. Given a set of samples S we can 
obtain estimate of p(u) using multivariate kernel density estimation (Comaniciu et al., 2000; 
Elgammal et al., 2003):
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(7)

where  is a Gaussian kernel of bandwidth h , whereas d denotes  the 
dimension. The quantization with 32x32x32 bins has been used to represent both the target 
as well as the background. 
An initial skin histogram, along with the model for non-skin background pixels, has been 
used to compute the probability of every pixel in the first input color image and thus to give 
the skin likelihood. A model for human skin color distribution was built using a repository 
of labeled skin pixels that has been prepared in advance. Given the histograms  and ,
the log-likelihood ratio for a pixel with color u is given by (Han & Davis, 2005):  

(8)

where  is a very small number, whereas   and  denote the frequency of pixels 
with color u in the foreground and background, respectively. Given the probability image 
the thresholding takes place. After that, the binary image is analyzed via a labeling 
procedure, which isolates connected components in order to detect the presence of face 
candidates in the image. Next, the candidate regions are subjected to morphological 
operations, such as size and hole filtering, to clean up the mask and to generate the mask 
indicating which pixels belong to the face. After alignment of the model shape with the 
current mask, the refined face mask is utilized to select from the newly classified pixels the 
representation of the skin distribution. Using such samples gathered over an initial sequence 
of frames the sequence-specific motion patterns are learned. A second-order Markov process 
has been chosen to model the evolution of the color distribution over time (Blake & Isard, 
1998; Sigal et al., 2000). 
Many studies have indicated that the skin tones differ mainly in their intensity value while  
they form compact cluster in chrominance coordinates (Yang et al., 1998). Hence, the 
evolution of skin cluster can be parameterized at each time instant t by translation, rotation 
and scaling. The translation parameters tp can be extracted on the basis of means from  
samples constituting a learning distribution, whereas the scaling parameters sp can be  
estimated from their standard deviations. The eigenvectors of the covariance matrices of 
samples from two consecutive frames define two coordinate frames, which can be then used 
to estimate the rotations rp .
The work (Blake & Isard, 1998) demonstrated that affine motion can be described via a 
second-order auto-regressive Markov process:  

(9)

where X ={tp
T , sp

T , tp
T } is the vector parameterizing the skin evolution. The parameters  

which should be learned are A0, A1 and C =BBT  because B cannot be observed directly. It 
was shown in (Blake et al., 1995) that the matrices A0 and A1 can be estimated on the basis of 
the following equations:  
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 (10a) 

 (10b) 

where , i, j =0,1, 2, and m denotes number of learning frames. 

Given A0 and A1 we can estimate C from the following equation: , where 

.
On the basis of predicted distribution the histogram  of skin colors is extracted. After  
normalization of the histogram we perform an adaptation which combines the histogram 
that had been obtained from the predicted distribution and the histogram from the last 
frame. Adaptation is made according to the following equation:  

(11)

where the adaptation coefficient  has been determined empirically. The histogram 
has been subjected to segmentation procedure to produce the face mask. The  refined face 
mask by statistical shape model, as discussed in Section 4, has been then used to collect the 
newly classified skin pixels in a list. 
The refined face mask by statistical shape model can contain non-skin pixels. Experiments 
demonstrated that the part of face below the hair was a source of such inadequate pixels. To 
deal with this undesirable effect, the pixels collected in the mentioned above list were 
additionally inspected if they fall within the prepared in advance skin locus. A prepared off-
line two-dimensional table defining possible skin chromaticities has been used at this stage. 
It has shown to be useful especially in eliminating non-skin pixels from the representation of 
the skin distribution in a sudden change of illumination. 
The list prepared in such a way has been utilized to generate the histogram . Finally, 
this histogram has been updated in the following manner: 

(12)

This histogram has been utilized to generate the skin image probability during tracking.  

5.1 Experiments in Time-Varying Illumination  

To test the elaborated method of skin color segmentation under time-varying illumination 
we performed various experiments on real images. Some images from one of our test 
sequences are shown at Fig. 12. Through this sequence we want to highlight the behavior of 
the tracking algorithm in varying illumination as well as in case of errors in color-based 
target segmentation. We can notice in frame #56 that even if the segmentation does not 
separate the object of interest from the background, the contour generated from the active 
shape model supports greatly the extraction of the target. In case of such an abrupt change 
of illumination and without the ASM-based shape refinement the color model would be 
influenced by the background colors. Thanks to precise delineation of face from the 
background and the adaptation mechanism the skin model contains only face colors, see 
frame #60, #70. The accommodation of the skin histograms over time takes place on the 
basis of feedback from shape, newly classified skin pixels and predictions of the skin color 
evolution. Once a face is being tracked, the color model adapts according to changes in 
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illumination and improves tracking performance. In this sequence we can also observe how 
the size of the shape is scaled in response to varying distance between the moving camera 
and moving person. The number of learning images has been set to 10.  

Fig. 12. ASM-based face tracking in varying illumination using intensity gradient and phase 
of Gabor filter responses. Frames #1, #50, #55, #56, #60, #70, #100 and #200. 

To study the adaptation performance in time-varying illumination conditions we conducted 
experiments with two configurations of the tracking algorithm. In the first configuration 
only the newly classified pixels were used to accommodate the histogram, whereas in the 
second one we utilized the predictions of the skin evolution. The predictions lead to better 
segmenta-tion of the tracked face in varying illumination, see Fig. 13. and Fig. 14. Until 
significant change of illumination in frame #56, both algorithms produce almost the same 
results, compare frame #55 at Fig. 13. and Fig. 14. Something better segmentation can be 
observed as early as in frame #57. Significantly better segmentation can be perceived in 
frame #70 and all frames behind it. A tracker built on an ellipse can not track the face in 
frames acquired after the change of the illumination. The presented system runs at 320x240 
image resolution at frame rates of 9-11 Hz on a 2.4 GHz PC.  
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Fig 13. Skin-like regions during adaptation-based on newly classified skin pixels. Frames 
#55, #56, #57, #58, #59, #60, (top row), #70, #80, #90, #100, #150, #200 (bottom row). 

Fig 13. Skin-like regions in learning-based adaptation. Frames #55, #56, #57, #58, #59, #60, 
(top row), #70, #80, #90, #100, #150, #200 (bottom row). 
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1. Introduction  

Robot and human interaction has received a significant amount of attention in the robot 
vision research community in the past decades. This has been motivated by the desire of 
understanding human gesture/motion tracking and recognition. If you solve tracking 
problems under the circumstance of fast movement, occlusion, and illumination, then you 
need to complicate calculation, and hence the computational complex prevents to work in 
real time. For example, particle filter is an useful algorithm to track objects, even under 
occlusion and non-rigid motion difference. However, particle filter needs to enough samples 
to support reliability of the potential candidates of the target. There have done many works 
in hand tracking. To track hands in real time, Shan(Shan, 2004) made particle filter faster by 
reducing sample size according to mean shift. On the other hand, Kolsch ( Kolsch&Turk, 
2004) designed a fast tracking algorithm that combined Kanade-Lucas-Tomasi(KLT) flocks 
and k-nearest neighborhood. 
Some papers concentrated on the particular properties of hands and their features. Non-
rigidity of the hand causes difficulties to track because of non-linear dynamics of the 
articulation. Fei and Reid(Fei&Reid, 2003) dealt with deformation of the hand by 
constructing two models according to non-rigid motion from rigid motion. HLAC (Higher-
Order Local Auto-Correlation) features of Ishihara (Ishihara&Otsu, 2004) achieved efficient 
information over time domain by Auto-Regressive model. 
The size of interesting objects is another critical factor for tracking because if its size is too 
small or changes too fast, object tracking becomes very challenging problem. 
Francçis(Francçis,2004) dealt with blobs varying their resolution, hence made it possible to 
track the object with various size in the image sequence. Both hands tracking is 
simultaneously different from one hand tracking since features such as shape, color etc. 
between both hands is almost the same each other. Shamaie (Shamaie&Sutherland, 2003) 
built the model of the movements of bimanual limbs. However, the model needs large 
enough time to compute distance transform in the image. McAllister( McKenna et al., 2002) 
solved the both hands tracking by employing contour distance transform and 2D geometric 
model. 
In this paper, we propose a new 2D both hands tracking algorithm based on the articulated 
structure of human body in real time. This method is efficient enough to perform in real 
time due to the limb model tracking. The model enables to deal with the deformation of 
hands and nonrigid motion because of the articulate structure of the arm for both hands. 
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The model can be tracked by a linear line obtained from the regression of KLT features in 
order to represent the target information. Unlike Shamaie and McAllister, the proposed 
algorithm outperforms previous method in occlusion handling of both hands. For instance, 
some methods require restricting occlusion cases because similar features prevent a hand to 
differentiate from another. However, this method tracks superimposed hands correctly by 
virtue of its prediction of the moving direction.  
In the next section, we will elaborate our proposed algorithm step by step. In the section 2 
A-B, we will illustrate key algorithms to build our model. In Section 2.3, we give brief 
explanation about how to segment and extract hands from the background. The section 2.4 
is dedicated to the dynamic model and the algorithms for occlusion detection and tracking. 
Some experimental results are presented in the section 3. Our contribution in hand tracking 
and conclusion are presented at the end of paper. 

2. Articulate Hand Motion Tracking Method 

2.1 Building the auto-regression model  

Auto-regression model is one of dynamical mode that is a statistical framework for motion 
tracking. Through accumulated motion sequences, dynamical model obtains the 
information to predict motion in the next frame. Second-order auto-regression model is a 
special Markov process model with gaussian priors X  N( X , V), the dynamical model 
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Also the Markov process can be expressed in a generative form: 

2 2 1 1 0( ) ( ( ) ) ( ( ) )k k k kX t X A X t X A X t X B w− −− = − + − +  (2) 

where A2, A1and B0 are all NX × NX AR coefficients. We set the order of auto-regression 
model as 2 because it can handle motions with different velocity and noisy direction [8].  

Figure 1. Learning and prediction accuracy using auto-regressive second-order model. Blue 
line stands for the original data and green and red lines are predicted data by AR2 model 
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AR2 coefficients were learned from the manually marked ground truth data. Training data 
consist of 100 samples and test data 53 samples with 7 dimensions with respect to x and y 
point of 2D hand, elbow and shoulder points, and a slope between an elbow and an hand. 
The AR2 model predicts most points well except for the gradients. Fig.1 (a) is the image of 
test samples (above row). Fig.1 (b) shows how to estimate the slope. We attempt to extract 
the slope in several ways: (1) y/ x (2) 1 = tan 1( y/ x) (3) 2 = tan 2 1 ( y/ x). The period of 

1 ranges from /2 to /2 and that of 2 ranges to . We emphasize on the gradient factor 
because it gives useful clues that a predicted hand belongs to which side when both 
predicted hands are crossed each other. 

2.2 KLT features and linear regression 

KLT features, named after Kanade, Lucas and Tomasi, provide steepest density gradients 
along the x and y directions (see [9]). The features are corner points with the largest 
eigenvalues. The size of each feature represents the amount of context knowledge and 
depends on two factors: quality level of a corner’ intensity and minimum distance between 
corner points. To match the image I and J, the current and the next image, we minimize the 
error function by the following equation: 

[ ( ) ( )]
W

J x I x dxε = −  (3) 

where W is the given feature window and w(x) is a weighting function. Minimizing Eq.(3), 
you find the A and d corresponding to the affine motion field and the translation of the 
feature window’s center, respectively. The largest eigenvalue of A estimates feature quality. 
In the presented system, KLT features calculate their density gradient on the skin and 
motion image when the object has motion or on the skin image if there is no object to move.  

Figure 2. We define a body structure consists of hands, shoulders and elbows. The elbow 
points, green cross marks in (a), represent the base point of the arm’s slope. In the first 
frame, the elbow points are assumed by the ratio of the length between a shoulder and an 
elbow and the length between the elbow and a hand. For the slope estimation, the difference 
between slope( )is considered to predict the next change of the slope.

By adjusting the feature size in the skin image or in the skin-motion image, KLT features can 
be spread out over the whole image plane. Therefore, we filtered KLT features using mean 
and variance constraint. That is, we removed all KLT features of which variances are more 
than 2.5 times the overall variance. Linear regression is applied to the filtered KLT features 
in order to get the slope and find the end point of each hand. Here, we note that the end 
point extraction needs a reference point because the slope and y-axis intercept need to fit the

(a) image frame (b) body structure (c) slope estimation 
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exact tracking position by removing noisy data and abstract the structural information of the 
arm by linear regression. This bias will be adjusted and removed by the reference point. As 
you can see in Fig.2, we construct the arm model for reflecting articulate motion of hands in 
tracking issue. There are three points for each arm: the shoulder, elbow and hand points. We 
take each elbow point into the reference point instead of the shoulder point because if you 
set the shoulder point up as the reference point, then you may lose the elbow point and 
cannot figure out the status of arms : stretched out , curved and so on. Fig. 2(c) shows the 
elbow and hand points and the line between them and the slope of the line illustrating in 
Fig. 2(c) gives the directional information when the occlusions within hands and arms are 
detected.  

Figure 3.  ’x-’ line: original data, ’o-’ line: tracked data. Left side plots: x-axis movement, 
right side plots:y-axis movement. Tracking results of the right (upper row) and left (lower 
row) hand. 

Therefore, we know which hand is the right hand and which one is the left when one hand, 
completely or partially, over the other hand. In short, the regression of KLT features gives 
you the position of the hands and the direction to move. 

2.3 Hand detection and pre-processing 

Skin-color and motion cues are adopted for pre-processing the image. Motion cues are 
obtained from differentiating the current frame with the previous frame. Skin-color 
segmentation requires the following four steps.  
1. Construct skin-color database with about one million size samples on RGB plan. 
2. Generate non-skin color database. 
3. Train the skin-color pixel and non-skin color pixel after transforming RGB spaces into 

YUV spaces. 
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4. Obtain the U-V image sequence along the Y plan. 
5. Create the representative U-V lookup table of skin-color at the mean point of Y. 
6. Find skin-color pixels in an input image using the U-V lookup table. 
The fourth and fifth steps are essential steps to achieve real-time skin color segmentation. In 
the third step, skin-color detection scheme needs 256×256× 256 comparison per a pixel on 
the YUV space. However, it is revealed that the trained U-V ranges did not have much 
difference on Y-spaces. Therefore, U-V values are chosen at the average point of Y as the 
skin-color lookup table.  
Finally, the interesting target the motion of skin-colored regions, the input image is 
processed by the logical AND operator between the color probability image and the 
difference image. 

Figure 4. Overview of fast 2D both hands tracking with articulate motion prediction 

2.4 A dynamic model for occlusion detection and tracking 

In this section, detecting occlusion and tracking is dealt with for both hands at once as 
shown in Fig.4.  
For tracking hands in an image, the limb model is useful to predict future movements of 
each hand and catch occlusion. Tracking is divided by two parts: crossed motion and 
uncrossed motion. Hand occlusion in the next frame can be detected by the following 
factors: (1)the size of superimposed region between predicted areas of both hands should be 
large enough; (2) the product of two slopes from left and right hands should be non-
positive; (3) the amount of slope changes from one frame to a consecutive frame should be 
beyond threshold. If these three conditions are all satisfied, it is the alarm that two hands are 
crossed each other.  
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Detection and tracking issues highly depend on characteristic of targets. Therefore, it is hard to 
find targets such as both hands with similar color and similar shape. This fact invokes the need 
of special features that can decide whether a hand belongs to left or right one. The proposed 
method uses directivity of hands because the limb structure of human body enables to restrict 
discriminative movement for each hand. Directivity can be obtained by KLT features and its 
regression result as already shown in 2.2. When predictive both hands are occluded each 
other, KLT features are collected when they are close enough to the predicted linear line from 
the previous frame. Closeness is calculated by the following eq. (4). Where a line equation ax +
b  y = 0 and a point (x0, y0) are given, the distance d is obtained by 

0 0

2 2

| |ax b y
d

a b

+ −
=

+
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The close KLT feature to the predicted line is highly possible a candidate of the target 
feature in the current frame. Therefore, the filtered KLTs are regressed in order to find the 
proper end point of the hand.  
On the other hand, this method analyzes blobs on the skin and motion image since blobs 
segments generic features without domain-dependent information. Difficulties that use blobs 
are the change of size and the velocity of a object corresponding to a blob. Such changes can be 
serious under the Ubiquitous Robotic Companion (URC) circumstance where image 
transmission is usually much slower than other mediums such as USB camera because of 
server-robot transmission system. Fast movement and sudden magnification/reduction of a 
target leads to lose the target information, preventing from tracking. In the proposed method, 
the AR2 dynamic model is used for eliminate such risk because second-order of auto-
regression can enlarge/abridge the search range of the target according to the status of the 
target movement. Moreover, the 2nd-order dynamic model gives the alarm of the occlusion. It 
is a cue of occlusion that each predictive region of both hands coincides with the same place. 
Tracking system selects occlusion process as shown in Fig.4 based on that cue.  

Figure 5. Both hands are crossed each other 

3. Experimental results 

Fig.1 (a) and (b) are the image of test samples (above row). We attempt to extract the slope 
in several ways: (1) y/ x (2) 1 = tan 1( y/ x) (3) 2 = tan 2 1 ( y/ x). The period of 1 ranges 
from /2 to /2 and that of 2 ranges to . We emphasize on the gradient factor because it 
gives useful clues that a predicted hand belongs to which side when both predicted hands 
are crossed each other. Fig.1 (a) and (b) represented how well the learned AR2 parameters 
predicted x/ y coordinates of both hands. Especially in Fig.1 (b), predicted points were 
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well tracked even if fast movement - the rapid change at x or y coordinate axes of the hand 
occur. On the other hand, Fig.1(c)-(e) showed that the gradient was hard to make a pre-
estimation. Although various approaches such as tangent and arc tangent were taken to 
calculate gradients, it is revealed that the gradient was very sensitive to the difference of the 
x coordination, x between (t-1) frame and (t) frame. For example, negligible x much less 
than 1 could cause remarkable change of its gradient but such difference in an image can be 
considered as roughly no change. In other words, although the hand stayed little motion 
along the x-axis in an image changes, robot considered it big hand movement while human-
beings can ignore such changes. Therefore, the effort to reduce the effect of x was made by 
transforming the gradient y/ x into 1 = arctan( y/ x), or 2  = arctan2( y/ x). However, 
some parts still failed to get correct prediction because tangent and arc tangent is a 
trigonometrical function having own period. That is, prediction could not but be failed at 
the extreme point of its period, 1: /2 and /2 and 2  : and , as shown in Fig.1(c)-(e). 
Despite of such restrictions of the slope prediction, the gradient information can provide the 
key clue that a hand belongs to left or right one. To adopt benefits of slope, tracking process 
was decomposed into two processes (see Fig.4). One is for the uncrossed hand tracking. 
Here, the slope information is kept in until the next frame. This process used x- and y- 
coordinates of both hands and confirmed the tracking result. Another handles the hand 
occlusion. That is, if the occlusion is detected by the AR2 model, then the previous slope for 
each hand is prepared for finding the correct hand position. 
For the bimanual tracking, it is hard to figure out whether both hands are crossed each other 
as well as which hand is a left or right one because both hands’ properties are almost the 
same. Our method proposes a good feature to discriminate two hands: directivity. The well-
known law of inertia can tell that a hand belongs to a right or left hand because moving 
objects suddenly do not change its direction. The directivity can be obtained from the slope. 
Fig.4 shows that the slope gives a cue whether both hands are superimposed. According to 
this information, we can track both hands simultaneously as shown in Fig.5. 
In order to measure the performance of the algorithm, 900 experiments were performed on 
many different hand shapes. The result of the experiments is listed in Table 1. Fig.3 shows a 
part of our experimental results. We performed the experiment using multimodal hand 
gesture database such as drawing ’O’ and ’X’, pointing left and right and so on. In Fig.3, the 
movement velocity along y-axis is higher than x-axis direction. Despite the velocity 
difference, our proposed algorithm adaptively found correct hand position whether its 
velocity is fast or slow. 
Another important issue in tracking is that an algorithm can be simulated under the real 
time system. Wever, a robot for cheap practical use, has limited computing power, can 
transport an image through the internet only in 6.5 frames per a second on average without 
additional image processing. Furthermore, the target, hand, was often found out of 
detectable range because of slow image transportation. Under this circumstance we 
achieved real-time tracking in 4.5 frames per a second. 

Side Left Right 
Hand(x –axis) 94.39±0.62 94.84±0.56 
Hand(y –axis) 93.01± 1.96 91.32± 1.75
Elbow(x-axis) 99.09±0.68 99.78±0.30 
Elbow(y-axis) 99.77±0.33 99.57±0.61 

Table 1. Tracking accuracy 
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4. Conclusion 

Our ARKLT method is very useful for tracking and gesture recognition. As mentioned 
before, the ARKLT method consists of three points for each hand: the shoulder, elbow and 
hand. Since the model reflects the articulated motion of the human body which is restrained 
by the each limb’s degree of freedom. That is, the possible region for hand movement is 
restricted in the elongated region of the shoulder and elbow movement. Therefore, the 
proposed method can devise effective prediction method, which enables to pre-detect 
crossing hands based on the body structure. In addition, the proposed method applies the 
KLT features and their regression line so that the body structure can effectively be fitted into 
the target. Also, the well-fitted KLT line can provide the exact point of a hand; meanwhile 
most tracking methods provide the broad region of the target. When it comes to practical 
uses such as gesture recognition, the find location of the target improves to draw accurate 
outcome, for example, gesture recognition. 
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1. Chapter overview 

The aim of this chapter is to present a general overview of the feature-based 3-D pose 
estimation and tracking techniques. Principles, classical techniques and recent advances are 
presented and discussed in the context of a monocular camera. The objective is to focus on 
techniques employed within both the visual servoing and registration fields for the 
wideclass of rigid objects. The main assumption to this problem rely on the availability of a 
3-D model of the object to track. 

2. Introduction: Model-based tracking and pose estimation 

The recovery of the 3-D geometric information from 2-D images is a fundamental problem 
in computer vision. When only one view is available, the appearance or the relative 
arrangement of the object features of interest should be modelled in a symbolic description 
so as to be compared with the image descriptors thanks to a similarity criterion. Geometric-
based approaches restrict the search for correspondence to a sparse set of geometrical 
features. They use numerical and symbolic properties of entities available. To automatically 
compute a rigid-body transformation (the pose), it is necessary to match a 3-D model 
features with part of the visible 2-D image features, a process referred to as the 
correspondence problem, and for the past four decades, the model-based pose estimation of 
objects with a simple geometry has been intensively studied. 
The major goal is tracking at camera frame rate the pose parameters in the world space. Therefore, 
features such as points, lines, ellipses are not only extracted from 2-D images, but the 3-D 
model and the pose of the object has to be also exploited. 

2.1 Related work on model-based 3-D tracking 

The modelbased 3-D tracking is closely related to the pose estimation problem. It can cope 
with abrupt motions and it is generally more efficient to deal with partial occlusions of the 
object of interest than 2-D tracking. However, it needs the correspondence problem to be 
solve at least once. The definition of object tracking algorithms in image sequences is an 
important issue for research and applications related to robot vision. A robust extraction 
and realtime spatiotemporal tracking of measurements is one of the keys to a successful 
visual servoingbased tracking, in particular for positionbased visual servoing approaches 
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(PBVS) (Hutchinson, 1996), where the tracking error is computed in the task space and 
thereafter used by the robot control system. 
The reference work on visionbased navigation is the dynamic tracking approach introduced 
by Dickmanns and Graefe (Dickmanns, 1988). In this work, the steering of cars, vehicle 
docking and aircraft landing are performed by dynamic modelling and edge feature 
extraction and processing. 
Feature extraction and matching play an important role, and restriction of matching is 
commonly done by windowing technique. Harris and Stennet (Harris, 1990), 
Papanikolopoulos et al. (Papanikolopoulos, 1993) and Hager and Toyama (Hager, 1998) 
with the XVision system restrict the search space of matching to a neighbourhood of the 
searched features. This reduces computational costs because only small parts of the image 
are processed. More recently, Thompson et al. (Thompson, 2001) use robust methods for line 
fitting and pose estimation by applying iterative median filters in order to detect outliers. In 
(Marchand, 2004), Marchand & Chaumette described both feature tracking issues and 
modelbased tracking for visual servoing techniques. Compared to Thompson's work, robust 
methods are used for tracking visual 2-D features which are related in turn to the 3-D 
motion (the motion field applied to imagebased visual servoing purposes). In this work, the 
pose estimation problem is seen as the dual problem of 2-D visual servoing: for a given 
pose, a set of virtual 2-D measurements are computed (the virtual camera). The approach 
consists of estimating the real pose by minimizing visual measurements errors (thus, by 
moving the virtual pose to the real one) with a robust control law. This approach can be 
thought as a minimization technique driven by the the 2-D/3-D mapping (perspective law 
herein) at each iteration, and which restricts the path from a guess solution to the desired 
one.

2.2 The pose determination versus camera calibration 

Generally, the identification of some of the camera parameters - the intrinsic parameters - is 
needed to achieve the pose. This process named as the camera calibration can be done as a 
preliminary step or it can be achieved in some situations simultaneously with the estimation of 
the pose (Sturm, 1997). The extrinsic parameters of the pose relate the world coordinates to the 
camera orientation and position and there is a lot of related works in the computer vision and 
photogrammetry literatures both on the pose estimation and camera calibration (Horn, 1986; 
Tsaï, 1987; Haralick, 1992; Hartley, 2000) as the two problems are strongly connected. With a 
single view, the accuracy of the intrinsic and extrinsic parameters estimates relies on the ability 
to extract the perspective effect in a reliable fashion from the imaged 3-D objects or from a 
couple of sets of planar patterns (Doignon, 1999; Zhang, 1999). Non linear effects and 
electronic synchronizations has been modelled by (Tsaï, 1987) twenty years ago and are 
significant disturbing factors in the captured perspective image. The radial alignment 
constraint (RAS) described by Tsaï alleviates some of the above mentioned problems for parts 
of extrinsic parameters, mainly the orientation and the direction of the position vector.  
The practical use of a camera calibration procedure is strongly limited by the socalled 
correspondence problem since many methods used points (Faugeras, 1987 ; Tsaï, 1987) or lines 
features (Liu, 1990) for that purpose. Recently, Meng and Hu have proposed a calibration 
based on circular points which does not need any correspondences (Meng, 2003) and nor 
computation of extrinsic parameters. A complete review of most of calibration techniques is 
reported in (Salvi, 2002). 
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2.3 The importance of feature grouping 

The pose determination from a single perspective view requires a local geometric 
description of objects and image features of interest. The space search for the onetoone 
correspondence may be very large when no constraint is used to associate them. Various 
recognition schemes have been proposed in the past to solve the search of the 
correspondence problem like the interpretation tree (Grimson, 1990), geometric hashing 
(Lamdan, 1988), aspect graphs (Ikeuchi, 1987; Hansen, 1989), focal features (Bolles, 1982 and 
1986), pose clustering (Olson, 2001), the soft assignment (Gold, 1998; David, 2002) and 
alignment techniques (Huttenlocher, 1990; Torr, 1999; Bartoli, 2001).  
Many authors have presented solutions to this problem in the context of the registration 
with alignment techniques. The goal is then to match two subsets (a subset of image features 
with a subset of features of the 3-D model) corresponding to a geometric transformation 
consistent with the data 2 (Haralick, 1984; Lowe, 1987; Ikeuchi, 1987; Thompson, 1987; 
Sugihara, 1988; Grimson, 1991; Jurie, 1999; David, 2002). For linear primitives such as points 
(vertices of a polyhedra, corners, zerocurvature points, intersections of lines,...) or straight 
lines (edges, tangent lines at zerocurvature points, polar lines,...), the search space of a 
consistent viewpoint1 is large as several features are needed to constrain it (typically 3 to 5 
matched linear features are required). 
Quadratic primitives constrain more the viewpoint. In many situations, only one quadratic 
feature is needed to find a small set of consistent pose parameters. In counterpart, quadratic 
primitives are more tricky to detect with a sufficient level of reliability (see (Weiss, 1993; 
Werghi, 1995; Pilu, 1996)). 

Figure 1. The 2D/3D rigid registration as an alignment technique from a subset of model 
features (in green) to a subset of visible image features 

                                                                
1The parameters of the viewpoint are corresponding to the determination of the pose or attitude of the 
viewed object. It is a imagetoworld (2-D/ 3-D) rigid registration. For a camerabased vision sensor, it is 
equivalent to the recovery of extrinsic parameters of a calibrated camera.  
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The size of these subsets are depending both on the geometric transformation and the 
number of dof which are constrained by the features used. Features grouping and 
classification are then important stages, to speed up the correspondence problem by 
rejecting a priori several very probable inconsistent subsets. For instance, the determination 
of a onedimensional homography between two sets of points requires the grouping of 3 
collinear points in both sets, since a onedimensional projective basis is defined with three 
points on the same line2.

2.4 An introduction to the correspondence problem 

We introduce the correspondence problem as it is an essential vision component for 
automate the pose and to detect outliers. A set of nm 3-D model features and a set of nI 2-D 
image features are used through a matching process to determine the "best" Euclidean 
transformation. Usually nm and nI are different for many reasons. A model feature may be 
occluded or outofthe camera field of view or some irrelevant feature may be detected in the 
image, because of the acquisition and segmentation processes. These artefacts act as outliers 
and they must be discarded. Anyway, even if nI = nm, a featurebased pose determination 
algorithm needs the onetoone correspondence between subsets of all available features. A 
naive approach could be done by computing the large set of geometric transformations with 
all combinations of nm ordered model features and nm unordered image points, and to select 
the transformation with the lowest target registration error (the "best" transformation). 
However, this is unpractical since the number of combinations is increasing very quickly 
with the number of features and lead to a cumbersome computing time. 
The matching process must be fast and as few timesensitive as possible to a small variation 
of the number of features involved. That's why, it is of prime importance to design pose 
algorithms with few features even if the final registration computation takes advantage of 
all available inliers. 
For instance, when one solves the solutions for the pose by means of the wellknown 
perspective 3-points problem (Horaud, 1987; Haralick 1989; DeMenthon 1992; Alter 1994), nm

model points should be matched with nI image points, considering every arrangement of 
triples of feature points. Hence, for nm 3-D model points and nI image points, there are 

 candidates (couples of triples) (Huttenlocher, 1990). To register the polyhedra with 
respect to the camera frame in Figure 1, there are typically nm = 8 vertices and at most nI = 7
visible points in the image. This lead to a large search space since 11760 putative couples of 
triples should be scanned so as to find the right alignment3.  One more image point issuing 
from artefacts extends the number of candidates up to 18 816, two more image points up to 
28 224. 
To provide a practical solution, some authors proposed to turn towards the estimation 
theory. There are many existing robust estimation algorithms and we relate one the most 
popular family of techniques referred to as the hypothesizeandtest approach (Grimson, 1990) 
where a small set of correspondences are first hypothesized, and the corresponding 

                                                                
2 If a fourth point (collinear to the three others) is included in the subset, a wellknown projective 
invariant can be computed, the crossratio, which is equivalent (but not equal) to the projective 
coordinate of this extra point in the projective basis 
3Considering a calibrated camera, every alignment provides 4 solutions for the pose following the 
perspective 3points approach, only two with the paraperspective approximation.  
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transformation is computed. The best known example of this approach is the RANdom 
SAmple Consensus (RANSAC) algorithm of Fischler and Bolles (Fischler, 1981) which is 
able to cope with a large amount of outliers and to automatically compute the a geometrical 
transformation. Another close algorithm is that of Rousseeuw & Leroy (Rousseeuw, 1987) 
applied by Rosin (Rosin, 1999) for the pose determination. 

3. Some pose estimation problems 

We begin this section with a short review of wellknown techniques for the pose with feature 
points and lines in general configuration, so as to orient the discussion toward less 
wellknown techniques like collinear points, spheres, cylinders and multiple heterogeneous 
features.

3.1 Pose recovery from points 

This problem has been addressed for many years and we suggest the interested reader to 
look for the following related work. The literature is vaste and the proposed solutions differ 
from the relative configurations of points (collinear points (Haralick, 1992), planar points 
(Tsaï 1987) or scattered 3-D data (Triggs, 1999)), the number of feature points used (Haralick, 
1991; Triggs 99, Nister, 2003), the computational approach (closedform (Dhome, 1989; 
Haralick, 1989; Horaud, 1989) or numerical iterative approaches (Horaud, 1987; Lowe, 1987; 
Yuan, 1989; DeMenthon, 1995; Rosin, 1999; David, 2002), concurrent processing 
(Linnainmaa, 1988), solutions which take advantages of data redundancy (Quan, 1999), the 
imaging model used (perspective model (Triggs, 1999; Hartley, 2000), weak perspective 
(Huttenlocher, 1990), paraperspective (Aloimonos, 1990) or orthoperspective (Alter, 1994)). 

3.2 Pose recovery from lines 

Usually, the extension of the previous related methods to the case of lines is straightforward 
for some specific arrangements as lines and points are dual entities in a projective plane. For 
instance, with a non parametric planar curve, it is possible to extract zerocurvature points 
(which are invariants by perspective projection in most cases), but since this kind of points 
are very unlocalized, one may preferably used tangent lines instead of zerocurvature points 
to match the 2D image features with the object model (Mokhtarian, 1986; Richetin, 1991). 
In the case of a polyhedra (see Figure 1 and Figure 3), a 3-D model can be built with a set of 
3-D straight lines which are generally not in the same plane. The linepoint duality does not 
hold any more and a specific method with 3-D lines (4 dof) should be investigated. It's a 
more difficult problem than that of the pose from points, since the equations which relate 
the 3-D line representation (see Figure 2) and its perspective projection in the image are 
quadratic functions of the pose parameters (Hartley, 2000). Dhome et al. (Dhome89), Chen 
(Chen, 1991b), Liu et al. (Liu, 1990}, Navab & Faugeras. (Navab, 1993), Andreff et al. 
(Andreff, 2000), Bartoli & Sturm (Bartoli, 2001) and Ansar & Daniilidis (Ansar, 2003) have 
proposed some pose and displacement algorithms from lines. In (Dhome, 1989), the solution 
is given by solving a polynomial equation of degree 8 with at least three lines. Chen (Chen, 
1991) points out some particular and important arrangements of 3 lines (concurrent lines, 
three lines with two parallel lines, coplanar lines, perpendicular lines,...) in order to reduce 
the degree of the polynomial equation, and consequently to reduce the number of solutions. 
The various approaches are differing from the geometric constraint used (Liu, 1990 and 
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Chen, 1991), and by the type of representation used like the Plückerian representation for 
the pose and motion analysis (Navab, 1993; Mitiche, 1995), for large displacements (Bartoli, 
2001), with the normalized version of the Plückerian representation (Andreff, 2000) or to get 
a linear algorithm with large data redundancy (Ansar, 2003). 
The perspective projection of a 3-D line  represented with the Plücker matrix L (whose
components are described with = (r, ) with rT = 0 in the object frame) is the line lc such 
that

(1)
with

(2)

Figure 2. (a) The geometric representation of a 3-D line with the Plücker coordinates = (r,
) . (b) A backprojection of an image line does not completely defines the 3-D line from 

which it came from 

is a vector with a direction perpendicular to the interpretation plane (also called pullback 
plane) which contains the straight line and the origin of the frame (the projection centre C in 
Figure 2b). It is a suitable representation since one may easily deal with geometrical 
transformations (Bartoli, 2001) including the perspective projection. The dual of the Plücker 
matrix, L*, may also represent the 3-D straight line, with the intersection of two planes. L
and L* are related with a simple rule (L L* = 0) and both representations are commonly used. 
These two (4 x 4) matrices are defined up to a scale, skewsymmetric and singular. The rank 
value (2) is expressing the orthogonality constraint between the two vectors r and .
Moreover, with the derivation of the characteristic polynomial of the Plücker matrix, one 
can easily show that eigenvalues are complex conjugates scalars (i μ, -i μ, 0, 0) with the 
expression μ 2 = r 2 + 2 . μ can be arbitrarily set to any nonzero value in order to 
normalize L.
Pc is the perspectivity, a (3 x 4) real matrix, composed of the camera parameters matrix Kc,
the 3-D rotation R and the position vector t of the object frame w.r.t. the camera frame:  
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(3)

Figure 3. Tracking simple shape in a structured environment. The modelbased polyedral 
object pose estimation is used to compute the camera displacements during the image 
sequence 

It is now clear that (1) is non linear with respect to the pose parameters r1, r2, r3 and t. The 
pose computation needs to solve these parameters given a set of n 3-D lines i and the 
corresponding imaged lines . It may be shown from equation (1) applied to the ith line, that 
we have

(4)

where  is the matrix Kronecker product. This is a linear system with respect to the (18 x 1) 
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vector of algebraically dependent unknowns, and it can be solved with at least n = 3 straight 
lines.

3.3 Pose recovery from collinear points 

In this part, we discuss on a very particular case of pose from points, especially when points 
are all lying on a common line as it is with fiducial markers or for patterns with structured 
lighting. 
Recovering the relative orientation (2 dof - a unit vector r) and the position (a 3-vector t) of a 
set of n collinear points such as the markers in Figure 4, with respect to the camera frame 
has been previously investigated by Haralick fifteen years ago (Haralick, 1992). The 
interpoint distances and the focal length f of the camera are assumed to be known. Haralick 
solved this problem with a linear algorithm. 

Figure 4. Collinear points (centroids of blue markers) stuck on a metallic and cylindrical 
surface 

Let P0 = t, P1 = t + 1 r, P2 = t + 2 r, ..., Pn-1 = t + n-1 r be n distinct points where i represents 
the distance between the i+1th and ith points. The first point P0 is arbitrarily chosen as the 
origin ( 0=0), hence the perspective projection Qi of the ith point with homogeneous 
coordinates (ui, vi, 1) is given by  

(5)

where Kc is a (3 x 3) upper diagonal matrix containing the parameters of the camera. From 
the above equation, Haralick built an homogeneous linear system with a univariate matrix 
Kc = diag(f, f, 1) and vectors t and r as unknowns 
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(6)

Ar and by At are two (2n x 3) real matrices whose components are functions of the camera 
parameters and the 's. A closedform solution can be found with n > 2 distinct points. This 
system may be reformulated as a classical optimization problem with an equality constraint 

r =1. The solution for r is given by the eigenvector associated with the smallest eigenvalue 
of the following symmetric matrix and the position vector t is
straightforwardly given by the expression . We end up with two 
estimates for r (a twofold ambiguity in the sign). However, for real objects placed in front of 
the camera, the third component of vector t must be strictly positive assuming that the 
camera zaxis (usually, the optical axis) is pointed towards the scene. This leads to the 
uniqueness of the solution for the pose.  
It worth pointing out that in presence of both noisy data and close points in the object 
pattern, matrices Ar and At are illconditioned, which may introduce a significant bias in the 
results. The use of the least mean squares for n > 3 and the lack of data normalization in the 
original algorithm tend the solution to be sensitive to the matrix condition number. One has 
to pay attention to data normalization (Hartley, 1997) since the pose estimation may be 
computed with points not always well scattered. This may also lead to numerical problems. 
To lower the condition number, it seems advisable to normalize data coordinates with an 
affine transformation (Trucco, 1998). 

3.4 Pose recovery from spheres 

To deal with quadratic primitives, we begin with the pose from spheres in this paragraph. 
The projection of a sphere surface through the central projection is a cone with the vertex at 
the projection centre (see Figure 5a). The intersection of that cone with the sphere surface is 
called the contour generator ( ) whereas intersections with the image plane provide the 
apparent contour ( ), both are elliptic planar curves in general. 
To our knowledge, the mathematical formulation and a solution to the 3-D pose of spherical 
objects has been firstly proposed by Shin and Ahmad (Shin, 1989). The solution was based 
on 3-D analytical geometry and a closedform solution is given. SafaeeRad et al. (SafaeeRad, 
1992) have also studied spherical objects pose in the context of mobile robotics and they 
have pointed out some major practical limitations in the pose accuracy, like the location of 
edges used in the ellipse parameters fitting, the uncertainty of intrinsic scale factors (due to 
timing mismatches that occur between camera scanning hardware and image acquisition 
hardware) and also the radial distortion of the lens. Ferri et al. (Ferri, 1993) present some 
algorithms for linear and quadratic primitives which include the computation of the 3-D 
pose and in particular a quadric of revolution. They provide a simple pose recovery 
procedure from the eigendecomposition of the matrix representation and they mentioned 
that in the case of a sphere, it must have two equal eigenvalues. Pose determination and 
camera calibration by means of images of spherical objects has also been studied, in 
particular by Teramoto and Xu (Teramoto, 2002), by Agrawal and Davis (Agrawal, 2003), by 
Dhome et al. (Dhome, 1990) and by Daucher et al. (Daucher, 1994). 
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(a)

(b)
Figure 5. (a) A sphere, its contour generator ( ) and its apparent contour ( ) in image plane 
is a conic. (b) Each detected ellipse is represented by a matrix E* related to the 3-D position 
of the sphere centre 

A sphere S is a quadric, and with the homogeneous coordinates of any point M on the 
sphere surface, it can be represented by a (4 x 4) symmetrical matrix S as MT S M = 0. The 
matrix S depends on the radius rs and the sphere position vector t =(tx , ty , tz)T from its centre 
to the world reference frame. When the camera reference frame coincides with the world 
reference frame, tz is chosen in the direction perpendicular to the image plane, and pointing 
towards the scene. When expressed in that frame, it is provided by 

(7)

where I is the identity matrix. Since t  is the distance between the sphere centre and the 
projection centre, C, the scalar t 2 - rs 2 must be positive as it is for a sphere placed in front 
of the camera, taken into account its own size. The dual of the sphere S is a sphere 
represented by the adjoint S* of S since it is a symmetric matrix. It is given by S* = S-1. Both 
matrices S and S* will be used hereinafter since a sphere and its image are easily related by 
dual matrices. 
With the pinhole camera model and homogeneous coordinates, a 3-D point M is projected 
onto the image plane in a 2-D point m such that  
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 (8) 

with

(9)

where the (3 x 4) camera matrix Pc is a perspectivity (or camera matrix) and  is a non null 
scalar. When expressed in the camera frame with the projection centre C as the origin, the 
camera matrix is of the form given by (8). Under the camera matrix Pc, the outline of the 
sphere S is an ellipse E in the image which can be represented with a (3 x 3) symmetric 
matrix E. The dual of E is the adjoint E* which can be related to the adjoint of S as follow 

(10)

By substituting equations (7) and (9) in (10), it has been shown by Agrawal (Agrawal, 2003) 
that

(11)

The work of Teramoto et al. (Teramoto, 2002) is a pose determination method in which the 
position direction and the size of a ball is derived in the case of known intrinsic parameters. 
It is extended here to the recovery of the full 3-D position with a slightly modification of the 
original work which will serve to analyze the eigendecomposition in presence of noisy data. 
Given the dual matrix E*, let us denote with tu = t/s, a unit vector with a nonnull scalar 
(s=± t ). Starting from equation (7), we have: 

(12)

with Q*=(Kc)-1 E* (Kc)-T. Since s/rs is always greater 1, the righthandside of the above 
equation is a rank-3 matrix, it can be written as: 

(13)

and the lefthandside can be decomposed as U diag ( 1 , 2 , 3) UT with U=[U1 ,U2 ,U3] is an 
orthonormal matrix. It's clear that we have

(14)

and
(15)

The solution is unique since the sign for tz (tz > 0) reveals the sign for the scalar s. It is worth 
pointing out that in one hand the symmetrical matrix E* has 5 independent components as it 
represents an ellipse in the image. In the other hand, the symmetrical matrix I – t tT/rs 2 has 
two eigenvalues equal to one (clearly t tT is a rank-1 matrix), hence representing a 
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"calibrated ellipse". So, it's clear that the geometric information issued from equation (11) 
has not been fully exploited. This means that either the position vector t can be solved with 
an overdetermined system (with data redundancy) or other parameters (like intrinsic 
parameters) may be determined from a unique sphere and its corresponding ellipse in a 
single image. Let us now considering the former case. Following this remark, a simple 
improvement of the Teramoto's method consists of a slightly modification of equation (14) 
since the two singular values 1 and 2 must be equal with uncorrupted data. Thus, we 
propose to replace equation (14) to by 

(16)

that is 1 is replaced by the midvalue of the first two singular values in presence of noise. 
The resulting matrix Qm* is then the closest symmetrical matrix to Q* with the Frobenius 
norm and is given by . Once the matrix Qm* has 
been derived, the (4 x 4) matrix may be computed with the estimated position vector 

thanks to the Teramoto's method, that is with .
Simulation results reported in Figure 6 show a better behaviour with respect to noise for the 
modified version we propose compared to the original algorithm. It is simple to implement 
and it does not require more computations. It has been used as an efficient tool while 
tracking the 3-D position of a moving camera mounted on a wheeled robot for robotic 
competition (see Figure 7). 
Windowing techniques are used to define the search space of the area of interest (the closest 
red ball). The diagonal of the inner blue square that area is corresponding to the estimated 
depth, whereas the the blue cross are corresponding to the position of the centre. (add at the 
end of figure caption)of the centre. 

Figure 6. Mean position errors with the Teramoto's method (red) and with the modified 
version (blue) with respect to varying noise level 
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Figure 7. 3-D tracking of red balls. A camera is mounted on a wheeled robot which is 
moving in the ground plane (basketball robot players). Given the radius, red balls should be 
tracked and picked up 

3.5 Pose estimation from cylinders 

To go ahead with quadratic primitives, we now discuss on the pose from cylinders, 
especially with straight homogeneous circular cylinders (SHCC), that is the class of 
cylinders with a straight axis and a circular section with constant radius (see Figure 8). 
In the late 80s and early 90s, shape from contour approaches have been developed in an 
attempt to determine constraints on a threedimensional scene structure based on different 
assumptions about the shape. The understanding of the relations between image contours 
geometry and the shape of the observed object and the viewing parameters is still a 
challenging problem and it is essential that special shapes are not represented by freeform 
surfaces without regard to their special properties, but treated in a way more appropriate to 
their simple nature. Explicit relations from occluding contours to the model of a curved 
threedimensional object have been presented for objects with geometrical properties such as 
generalized cylinders or surfaces of revolution (Dhome, 1992; Ferri, 1993; Kriegman, 1990 ; 
Ponce, 1989). 
More recent works are based on the image contour of a cylinder crosssection when it is 
visible. Puech et al. (Puech, 1997) used the image of two crosssections to locate a straight 
uniform generalized cylinder in 3-D space and Shiu and Huang (Shiu, 1991) solve the 
problem for a finite and known cylinder height, that is a 3-D pose determination for 5 
degrees of freedom. SafaeeRad et al. (SafaeeRad, 1992) estimate the 3-D circle centre and 
orientation from the projection of one of the two circles on the cylinder ends. However, 
ellipse fitting generally becomes inaccurate when the cylinder radius is small with respect to 
the cylinder height and also since both circles on the cylinder are not completely visible. 
Huang et al. (Huang, 1996) solve the pose determination of a cylinder through a reprojection 
transformation which may be thought as a rectification transformation. The computed 
transformation is applied to the image of the cylinder and brings the camera optical axis to 
perpendicularly intersect the cylinder axis, which is then parallel to one of the two image 
axes. The new image (called "canonical" image) is a symmetrical pattern which simplify the 
computation of the pose. It is an interesting method which provides an analytical solution of 
the problem, including the recovery of the height of the cylinder. However, it's requiring an 
image transformation and errors for estimating the reprojection transformation may lead to 
significant bias in the contours location of the resulting canonical image and consequently to 
the pose parameters. In a similar way, Wong et al. (Wong, 2004) take advantage of the 
invariance of surface of revolution (SOR) to harmonic homology and have proposed to 
recover the depth and the focal length (by assuming that the principal point is located at the 
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image center and that the camera has unit aspect ratio) from the resulting silhouette which 
exhibits a bilateral symmetry. It is also a rectification which brings the revolution axis to 
coincide with the yaxis of the image. If the image of a latitude circle in the SOR can be 
located, the orientation of the revolution axis can also be estimated. 

Figure 8. A straight homogeneous circular cylinder and its perspective projection. The 
backprojection of apparent lines (l–, l+) is a couple of planes (Pc)T l– and (Pc)T l+ passing 
through the centre. The image of the cylinder axis  is the axis ls of the harmonic homology 
H relating the two apparent lines

Some other approaches based on contours and shading have also been proposed. Asada et 
al. (Asada, 1992) provide a technique to recognize the shape of a cylinder crosssection and to 
determine the orientation axis under the weak Lambertian assumption for the reflectance of 
the object surface when the surface does not include specular component. Caglioti and 
Castelli (Caglioti, 1999) focus their work rather on metallic surfaces (cylinders and cones) 
and they recover the pose parameters by means of the axial symmetric reflection model. 
However, although methods which do not solely involve geometric features should be more 
investigated to achieve an accurate pose estimation, these two latter methods assume an 
orthographic projection for the camera model, a too strong approximation when cylinder 
orientation is partly embedded in the perspective effect. It has been shown in (Doignon, 
2007) that the estimation of the Plücker coordinates (r, ) of the cylinder axis can be directly 
recovered from the degenerate conic C = l– (l+)T+l+ (l–)T built with the two apparent lines (l–,
l+) and the cylinder's radius rc with a calibrated camera. In one hand, we have 

(17)

and in the other hand (after some computations , see (Doignon, 2007) for details). 
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(18)

with  and the unit vector zu=z/  . It is easy to see 

that and finally .
Some results, illustrated in Figure 9 and Figure 10, show the efficacy of the proposed fitting 
and pose determination. Firstly, the pose determination is performed in a simple and 
controlled environment (Figure 9). Second, in a complex environment with a moving 
background (the abdomen of a pig), a cylindricalshaped 
laparoscopic instrument is detected (thanks to a joint huesaturation colour attribute). 
Plücker coordinates are computed with the method described above. It is shown in 
(Doignon, 2007) that the direction of vector is directly related to the image of the cylinder's 
axis.

Figure 9. The 3-D tracking of the cylinder's axis through the detection of the conjugate 
apparent lines in a uniform background 

Figure 10. The 3-D of the cylinder's axis of cylindricalshaped laparoscopic instruments 
through the detection of the conjugate apparent lines in a complex environment (abdomen 
of a pig) 

3.6 Pose estimation with multiple types of geometrical features 

We now turn to a little bit towards more complex environments. As some features may be 
occluded during the tracking, it is necessary to estimate the pose with multiple features. We 
introduce this approach with an example in Figure 11. The virtual visual servoingbased 
pose estimation (see the end of paragraph 2.1) is carried out with three geometrical features : 
a cylinder, a circular needle and marker points. Only four degrees of freedom are necessary 
to estimate the attitude of the instrument axis. The 4 dof of the pose can be determined using 
the contour generator and its image (the apparent contour) of the cylinder (see paragraph 
3.5). However, the positions of the marking spots not only define the proper rotations and 
translations, but also give information on the orientation and position of the axis of the 
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shaft. We then chose to estimate the 6 dofs of the instrument with all the available features. 
This can be done with analytical methods using both the apparent contours and one known 
point at the cylinder's surface (Nageotte, 2006). 
The full pose estimation is interesting for robustness considerations only if all the available 
information given by the apparent lines and all the spots is used. To this purpose, the 
Virtual Visual Servoing (VVS) due to Sundareswaran (Sundareswaran, 1998) and also by 
Marchand (Marchand, 2002) and may handle the information redundancy. VVS is a 
numerical iterative method for minimizing the error between the extracted features and the 
forward projection of the object in the images and based on the imagebased visual servoing 
(IBVS) schemes. This process needs the computation of an interaction matrix which relates 
the variations of each image feature and the camera velocity screw . With these image 
features, the full interaction matrix Ls has the following generic form: 

(19)

The interaction matrices associated to a point p, Lpt, to a line l, Lline , and associated to an 
ellipse E=(xe, ye, rmin, rmax, e), Lellipse , can be found in Espiau et al. (Espiau, 1992) or in 
Chaumette et al. (Chaumette, 1993). In order to guarantee a fast convergence and a good 
stability of the VVS, it is useful to initialize the algorithm close enough to the real pose. For 
this purpose, we use the modifed version of the Haralick's method and the DeMenthon 
iterative method (DeMenthon, 1995) for points, that of Dhome (Dhome, 1992) to get the 4 
solutions for the pose of a circle and the pose determination of the axis of a circular cylinder 
described at the paragraph 3.5. With this initial pose parameters estimates for the attitude of 
the camera with respect to the object of interest (a laparoscopic surgical instrument, see 
Figure 11), the following control law is applied to the virtual camera 

(20)

until the control vector becomes smaller than a specified value. The process converges 
quickly towards the real pose of the camera (see Figure 11). 
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(a) (b) 

(c)

Figure 11. The pose estimation as a Virtual Visual Servoing process with multiple geometric 
features (apparent lines, markers and a circular needle). (a) The blue lines are the projections 
with the initial virtual camera position. (bc). The projections when the error vector (s - s*)
tends to 0 

4. Further Readings : Pose estimation with multiple cues 

We close the chapter by touching upon the difficult problem of the pose estimation and 
tracking in a complex and unknown environment. In many situations, like for assistance 
domestic environments, outdoor navigation or tracking inside the human body, the 
observed scene is unstructured and the background is not uniform nor constant. It is then 
not a trivial task to detect object of interests or patterns, since brightness and colour are 
changing and the background moves due to human displacements, the wind or the 
breathing or heart beating in the third case, leading to shadows, occlusions or specularities. 
Some rather recent works integrate multiple visual cues like colour (Vincze, 2005), texture 
(Pressigout, 2006) or global&local descriptions (Kragic, 2002) or a learning stage (Vacchetti, 
2004) to improve the tracking process. 
The Vision for Robotics (V4R) software package proposed by Vincze et al. (Vincze, 2005) 
integrates multiple cues like edge gradient, colour, intensity, topological interrelations 
among features and pose from preceding frames to provide an efficient visual modelbased 
tracking tool in realistic and unconstrained environments. These cues are derived not only 
from the images but also from object parameters (the model) and pose information stored 
within previous tracking cycles. A fourstage tracking scheme is designed, from the 2-D 
feature extraction to the pose computation and validation. 
For domestic environment (living room), Kragic & Christensen propose to use both the 
appearance and geometrical models to estimate the position and orientation of the object 
relative to the camera/robot coordinate system. Following a threestage strategy 
(initialization, pose estimation, tracking), this system may be seen as a coarsetofine tracking. 
The initialization step provides an approximation to the current object pose by means of the 
Principle Components Analysis. Once the model is found, a local fitting is used to extract 
linear primitives from which the pose is computed. Finally, if the object or the eyeinhand 
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robot start to move, the Drummond's method (Drummond & Cipolla, 2000) is adopted to 
provide a realtime estimate of the object pose. 
 Vacchetti et al. (Vacchetti, 2004) have formulated the tracking problem using a single 
camera in terms of local bundle adjustment and have developed an image correspondences 
method that can handle short and widebaseline matching. The video information of a very 
limited number of reference images created during a training stage is merged with that of 
preceding frames during the tracking. The tracking process needs a 3-D model of any object 
that can be represented by a 3-D mesh. Thus, keyframes serve to register an incoming image 
by means of a set of extracted corners thanks to the minimization of the reprojection error 
with the Tukey Mestimator. The reported results have demonstrated a very good robustness 
with respect to aspect changes, model inaccuracies, partial occlusions, focal length and scale 
changes, and illumination changes. 
Pressigout and Marchand (Pressigout, 2006) propose a realtime hybrid 3-D tracking with the 
integration of the texture information in a nonlinear edgebased pose estimation algorithm. 
Pose and camera displacements are formulated in terms of a full scale nonlinear 
optimization instead of a point of interestbased pose estimation. In particular, the camera 
displacement estimation is based on a two images intensity matching. A non linear criterion 
based on intensity mapping error is defined to that purpose from which an interaction 
matrix is derived. 

5. Conclusion 

With this article, we have addressed some issues in pose estimation with geometrical 
features and a modelbased approach in the context of monocular vision. While the 3-D 
tracking/estimation may be performed with optimal estimators (with the Kalman filter and 
its extended/nonlinear versions or with the particle filter also referred to as the sequential 
Monte Carlo method), system models and state vectors need the pose parameters recovery 
or the 3-D motion recovery from the motion field. The pose determination is needed for 
applications with high accurate 3-D positioning requirements, when occlusions, shadows or 
abrupt motions have to be handle. To this purpose, several geometrical featurebased 
approaches have been reviewed for solving the pose with various constrained degrees of 
freedom.
Cue integration leads to robustness and automatic measurement of scene complexity. This is 
of prime importance to exploit the video information captured in a complex environment 
with dynamical changes. Composite features, colour, edges, texture integration are some 
additional data which have brought significant improvements of the tracker's behaviour 
thanks to robust and Mestimators. This is a key factor of success for a visionbased module 
with some autonomous capabilities, hence for the achievement of some visionbased (semi) 
autonomous tasks. 
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1. Introduction     

Depth perception is one of the most active research areas in computer vision. Passive stereo 
vision is a well known technique for obtaining 3-D depth information of objects seen by two 
or more video cameras from different viewpoints (Hartley & Zisserman, 2000|Brown et al., 
2003). The difference of the viewpoint positions causes a relative displacement of the 
corresponding features in the stereo images. Such relative displacement, called disparity, 
encodes the depth information, which is lost when the three dimensional scene is projected 
on an image. The key problem, which is difficult to solve and computationally expensive 
(Barnard & Fisher, 1982), is hence to compare each feature extracted from one image with a 
number, generally large, of features extracted from the other image in order to find the 
corresponding one, if any. Once the matching process is established and the stereo vision 
system parameters are known, the depth computation is reduced to a simple triangulation 
(Jane & Haubecker, 2000|Dooze, 2001). 
This chapter presents some recent research works proposed to solve the stereo matching 
problem. The presented methods are based on a global approach, which can be viewed as a 
constraint satisfaction problem where the objective is to highlight a solution for which the 
matches are as compatible as possible with respect to specific constraints. These methods are 
tested and evaluated for real-time obstacle detection in front of a vehicle using linear stereo 
vision.  

2. Related Works 

Many approaches have been proposed to solve the stereo matching problem. According to 
the considered application, the existing techniques are roughly grouped into two categories: 
area-based and feature-based (Haralick & Shapiro, 1992). Area-based methods use 
correlation between brightness patterns in the local neighbourhood of a pixel in one image 
with brightness patterns in the local neighbourhood of the other image (Scharstein & 
Szeliski, 2002|Saito & Mori, 1995|Han et al., 2001|Tang et al., 2002). These methods, which 
lead to a dense depth map, are generally used for 3D scene reconstruction applications. 
Feature-based methods use zero-crossing points, edges, line segments, etc. and compare 
their attributes to find the corresponding features (Lee & Leou, 1994|Lee & Lee, 
2004|Nasrabadi, 1992|Tien, 2004|Pajares & de la Cruz, 2004|Candocia & Adjouadi, 
1997|Starink & Backer, 1995). These methods, which lead to a sparse depth map, are 
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generally used to ensure environment perception, as for obstacle detection. Feature-based 
methods can be used also for 3D scene reconstruction by interpolating the sparse depth 
map. To resolve matching ambiguities, feature-based and area-based methods use some 
constraints like epipolar, uniqueness, smoothness and ordering (Wang & Hsiao, 
1999|Zhang et al., 2004). 
In the robot vision domain, the stereo matching problem is generally simplified by making 
hypotheses about the type of objects being observed and their visual environment so that 
structural features, such as corners or vertical straight lines, can be more or less easily 
extracted (Kriegman et al., 1989). Indoor scenes, including a few rigid objects scattered 
without occlusions against a featureless background, are much easier to analyze than 
natural outdoor scenes of the real world (Nitzan, 1988). With such restrictive assumptions, 
the number of candidate features for matching is substantially reduced so that computing 
times become acceptable for real-time processing without an important loss of useful 
information. Unfortunately, none of these hypotheses can be used in outdoor scenes, such as 
road environments, for detecting and localizing obstacles in front of a moving vehicle, 
because the features are too numerous to allow a reliable matching within an acceptable 
computer time (Bruyelle & Postaire, 1993). 
Considering these difficulties, some authors have proposed to use linear cameras instead of 
matrix ones (Bruyelle & Postaire, 1993|Inigo & Tkacik, 1987|Colle, 1990). With these 
cameras, the information to be processed is drastically reduced since their sensor contains 
only one video line, typically 2 500 pixels, instead of, at least, 250 000 pixels with standard 
raster-scan cameras. Furthermore, they have a better horizontal resolution than video 
cameras. This characteristic is very important for an accurate perception of the scene in front 
of a vehicle. 
To solve the problem of matching edges extracted from stereo linear images, a classical 
approach is to use correlation techniques (Bruyelle & Postaire, 1993). In order to improve 
this basic approach, it has been proposed to explore the edges of the two linear images 
sequentially, from one end to the other. A majority of candidate edges can be matched 
without ambiguities by means of this scheme, performed forward and backward (Burie et 
al., 1995). However, this sequential procedure can leave some unmatched edges, and may 
lead to false matches, which are difficult to identify. 
This chapter is concerned with the stereo matching problem for obstacle detection using 
linear cameras. The proposed approach is based on a global formulation of the stereo 
matching problem. Considering only possible matches that respect local constraints, the 
principle of this approach consists in searching a solution for which the matches are as 
compatible as possible with respect to global constraints. Thus, the stereo matching problem 
can be viewed as a constraint satisfaction problem. This approach is turned in different 
methods, which are evaluated and compared for obstacle detection using linear stereo 
vision. 

3. Linear Stereo Vision 

3.1 How to Build a Linear Stereo Vision Set-up 

A linear stereo set-up is built with two line-scan cameras, so that their optical axes are 
parallel and separated by a distance E (see Figure 1). Their lenses have identical focal 
lengths f. The fields of view of the two cameras are merged in one single plane, called the 
optical plane, so that the cameras shoot the same line in the scene. A specific calibration 
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method has been developed to adjust the parallelism of the two optical axes in the common 
plane of view attached to the two cameras (Bruyelle, 1994). This calibration technique 
necessitates a specific planar calibration chart (see Figure 2), which bears two horizontal and 
two vertical calibration marks. The stereo set-up is calibrated when the vertical calibration 
marks are seen by the two cameras and when the horizontal calibration marks are at the 
centre of the two linear images. A set of oblique lines is provided so that the user knows if 
he is adjusting the positions of the cameras in the right direction. 

Stereoscopic axis 

Optical plane 

f

E

Optical axis of the left camera 

Optical axis of the right camera 

Planar field 

of the left 

camera 

Stereo vision 

sector 

Planar field 

of the right 

camera 

Figure 1. Geometry of the cameras 

Oblique guide lines: coarse

Vertical calibration marks

Horizontal calibration marks

Oblique guide lines: fine

Figure 2. Calibration chart of the linear stereo set-up 

If any object intersects the stereo vision sector, which is the common part of the two fields of 
view in the optical plane, it produces a disparity between the two linear images and, as a 
consequence, can be localized by means of triangulation. 
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Let the base-line joining the perspective centers Ol and Or be the X-axis, and let the Z-axis lie 
in the optical plane, parallel to the optical axes of the cameras, so that the origin of the {X,Z}
coordinate system stands midway between the lens centers (see Figure 3). Let us consider a 
point P(Xp,Zp) of coordinates Xp and Zp in the optical plane. The image coordinates xl and xr

represent the projections of the point P in the left and right imaging sensors, respectively. 
This pair of points is referred to as a corresponding pair. Using the pin-hole lens model, the 
coordinates of the point P in the optical plane can be found as follows: 

d
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where f is the focal length of the lenses, E is the base-line width and d = |xl - xr| is the 
disparity between the left and right projections of the point P on the two sensors. 

f

Z

X

xrxl

OrOl O

zP

E

P(xP,zP)

xP

Left sensor Right sensor 

Figure 3. Pin-hole lens model 

3.2 Feature Extraction 

The low-level processing of a couple of two stereo linear images yields the features required 
in the correspondence phase. Edges appearing in these simple images, which are one-
dimensional signals, are valuable candidates for matching because large local variations in 
the gray-level function correspond to the boundaries of objects being observed in a scene. 
Edge detection is performed by means of the Deriche’s operator (Deriche, 1990). After 
derivation, the pertinent local extrema are selected by splitting the gradient magnitude 
signal into adjacent intervals where the sign of the response remains constant (Burie et al., 
1995) (see Figure 4). In each interval of constant sign, the maximum amplitude indicates the 
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position of a unique edge associated to this interval when, and only when, this amplitude is 
greater than a low threshold value t. The application of this thresholding procedure allows 
to remove non significant responses of the differential operator lying in the range [-t,+t]. The 
adjustment of t is not crucial. Good results have been obtained with t adjusted at 10% of the 
greatest amplitude of the response of the differential operator. 

Profile of a linear image

Local extrema selected

+ + + + ++

- - - -

-t

Insignificant extrema

t

Figure 4. Edge extraction 

Applied to the left and right linear images, this edge extraction procedure yields two lists of 
edges. Each edge is characterized by its position in the image, the amplitude and the sign of 
the response of the Deriche's operator.

4. Hopfield Neural Network Based Stereo Matching 

4.1 Problem formulation 

Let L and R be the left and right lists of the edges, respectively. The matching between L and 
R is first formulated as an optimization problem where an objective function, which 
represents the constraints on the solution, is to be minimized. The objective function, 
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defined such that the best matches correspond to its minimum value, is then mapped onto a 
Hopfield neural network for minimization. 
The objective function is defined from three global constraints. The first one is the 
uniqueness constraint, which assumes that one edge in L matches only one edge in R (and 
vice-versa). The second global constraint is the ordering constraint, which is used to 
preserve the order, in the images, between the matched edges. This means that if an edge l
in L is matched with an edge r in R, then it is impossible for an edge l’ in L, such that xl’ < xl,
to be matched with and edge r’ in R for which xr’ > xr, where x denotes the position of the 
edge in the image. The third constraint is the smoothness constraint, which assumes that 
neighboring edges have similar disparities. 
Combining the three global constraints, the objective function, representing the stereo 
correspondence problem, is defined so that its minimum value corresponds to the best 
solution. It can be expressed as: 
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where Ku, Ko, and Ks are weighting positive constants, which are set experimentally to 5, 1
and 1, respectively. Elr represents the matching state between the edge l in L and the edge r
in R: if Elr = 1, then the edges l and r are matched; otherwise they are not matched. Ω is the 
set of all possible matches between the edges in L and those in R, i.e. the set of all pairs of 
edges (l,r) that satisfy the two following local constraints. Resulting from the sensor 
geometry, the first one is the geometric constraint, which assumes that a couple of edges l
and r appearing in L and R, respectively, represents a possible match only if the constraint xl

> xr is satisfied. The second local constraint is the slope constraint, which means that only 
edges with the same sign of the gradient are considered for a possible matching. 

{ }sconstraintlocalthesatisfy),(/),( rlRLrl ×∈=Ω  (4) 

The two first terms of the objective function correspond to the uniqueness constraint. It can 
be seen that these terms tend to increase when multiple matches occur (i.e. when an edge in 
L (respectively R) has more than one corresponding edge in R (respectively L)). The first 
term (respectively second term) tends to a minimum value when the sum of the matching 
states of all possible matches of an edge in L (respectively R) is equal to 1.
The third term allows the ordering constraint to be respected. The coefficient Olrl’r' indicates 
whether the order between the two pairs (l,r) and (l’,r’) is respected: 
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The fourth term of the objective function is used to enforce the smoothness constraint. The 
coefficient Slrl’r’ indicates how compatible the two pairs (l,r) and (l’,r’) are: 
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where Xlrl’r’ is the absolute value of the difference of disparities of the pairs (l,r) and (l’,r’).
The nonlinear function S(X) scales the compatibility measure smoothly between -1 and 1.
The parameter ω is adjusted so as to allow some tolerance with respect to noise and 
distortion. It is chosen such that a high compatibility is reached for a good match when X is 
close to 0, while a low compatibility corresponds to a bad match when X is very large. A 
satisfying value of this parameter is experimentally selected as ω = 20. The parameter α
controls the slope of the function S(X) when X = ω. This parameter is set experimentally to 
0.1.

4.2 Objective Function Mapping onto a Hopfield Neural Network 

After the mathematic formulation of the stereo correspondence problem as an optimization 
task, the next step is to map the objective function onto a Hopfield neural network for 
minimization. The neural network consists of a set of neurons mutually interconnected: each 
neuron is connected to all the other ones, except itself (Hopfield & Tank, 1985). A neuron nlr

of the network represents a possible match between the edges l and r appearing in L and R,
respectively (see Figure 5). Note that only the pairs satisfying the local constraints are 
represented in the Hopfield neural network. The output of the neuron nlr corresponds to the 
matching state Elr.
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Figure 5. Hopfield neural network architecture. The white circles correspond to the neurons 
representing possible matches whereas the black ones correspond to the neurons 
representing impossible matches with respect to the local constraints 
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To determine the connection weights {Wlrl’r’} between the neurons and the external inputs 
{Ilr}, the objective function is rearranged in the form of the energy function of the Hopfield 
neural network: 
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Once the objective function has been mapped onto the Hopfield neural network, the 
minimization process is achieved by letting the so-defined network evolve so that it reaches 
a stable state (i.e. when no change occurs in the state of its neurons during the updating 
procedure). For the neural network relaxation, we have chosen a continuous dynamic 
evolution in which the output of the neurons is allowed to vary continuously between 0 and 
1. It has been shown that continuous Hopfield neural networks perform better than discrete 
ones in which the neuron outputs are restricted to the binary values 0 and 1. With a 
continuous Hopfield network, the output of a neuron can be interpreted as a matching 
probability or quality, which is quantified continuously from 1 for a correct match to 0 for a 
wrong match. To start the network evolution, the neural states are set to 0.5, i.e. all the 
possible matches are considered with the same probability. During the network evolution, 
the state of neurons representing good matches converges toward 1 and the state of neurons 
representing bad matches converges toward 0.
The equation describing the time evolution of a neuron nlr in a continuous Hopfield neural 
network is: 
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where ulr is the internal input of the neuron nlr and τ is a time constant, which is set to 10.
The internal input ulr and the output Elr of the neuron nlr are coupled as: 
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where  is a parameter, which determines how close the final state of the neurons is to the 
binary values 0 and 1. This parameter is set experimentally to 0.01.
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To extract the pairs of corresponding edges from the final state of the network, a procedure 
is designed to select the neurons for which the output is maximum in each row and each 
column of the network. This is achieved by selecting, in each row of the network, the neuron 
with the largest response. However, this procedure can select more than one neuron in a 
same column. To discard this configuration, which corresponds to multiple matches, the 
same procedure is applied to each column of the network. The neurons selected by this two-
step procedure indicate the correct matches. 

4.3 Application to Obstacle Detection 

A linear stereo set-up is installed on top of a car, 1.5 m above the level of the road, for 
periodically acquiring stereo pairs of linear images as the car travels (see Figure 6). The tilt 
angle is adjusted so that the optical plane intersects the pavement at a distance Dmax = 50 m 
in front of the car. This configuration ensures that every object that lies on the road in front 
of the vehicle is seen by the two cameras, even if its height is very small. 

O ptical plane

Planar field

of left cam era

Planar field

of right cam era

Stereo vision sector

E

(a)

(b)
Figure 6. Stereo set-up configuration. (a) Top view. (b) Side view  
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One of the sequences shot in field conditions by this set-up is shown in Figure 7. In these 
pictures, the linear images are represented as horizontal lines, time running from top to 
bottom. In this example, the left and right sequences are composed by 200 linear images 
each. In this sequence, a pedestrian travels in front of the car according the trajectory shown 
in Figure 8. On the images of the sequence, we can clearly see the white lines of the 
pavement. The shadow of a car, located out of the vision plane of the stereoscope, is visible 
on the right of the images as a black area. 

    
Figure 7. Stereo sequence. (a) Left sequence. (b) Right sequence  

The neural processing of this stereo sequence allows determining the matched edge pairs. 
The disparities of all matched edges are used to compute the horizontal positions and 
distances of the object edges seen in the stereo vision sector. The results are shown in Figure 
9 in which the horizontal positions are represented along the horizontal axis and the 
distances are represented by color levels, from the red, which corresponds to the farther 
distance, to the blue, which corresponds to the closer distance. As in Figure 7, time runs 
from top to bottom. The edges of the two white lines have been correctly matched and their 
detection is stable along the sequence. Indeed, the positions and distances remain constant 
from line to line. The pedestrian is well detected as he comes closer and closer to the car. The 
transition between the pavement and the area of shadow is also well detected. The presence 
of a few bad matches is noticed when occlusions occur (i.e. when the pedestrian hides one of 
the white lines to the left or right camera). These errors are caused by matching the edges of 
the white line, seen by one of the cameras, with those representing the pedestrian. Using an 
AMD Athlon XP 2800+ PC with 1.67 GHz and 512 Mo RAM, the processing rate is about 90
pairs of stereo linear images per second. 

Intersection between the optical 

plane and the pavement 
B

A

C

D

E

Figure 8. Trajectory of the pedestrian during the sequence 
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Figure 9. Neural stereo reconstruction 

5. Genetic Algorithm Based Stereo Matching 

It is known that Hopfield neural networks can perform only a local optimization process, 
and thus, they do not always guarantee to reach the global optimum, which corresponds to 
the best matching solution. 
Genetic Algorithms (GAs) are randomized searching and optimization techniques guided 
by the principles of evolution and natural genetics (Goldberg, 1989). They are efficient, 
adaptive and robust search processes, and they are not affected by the presence of spurious 
local optimum in the solution space. Indeed, GAs span the solution space and can 
concentrate on a set of promising solutions that reach the global optimum or converge near 
the optimal solution. GAs have been applied successfully in many fields such as image 
processing, pattern recognition, machine learning, etc. (Goldberg, 1989). 

5.1 Integer Encoding Scheme 

To solve the stereo correspondence problem by means of a genetic algorithm, one must find 
a chromosome representation in order to code the solution of the problem. Let L and R be 
the lists of the edges extracted from the left and right linear images, respectively. Let NL and 
NR be the numbers of edges in L and R, respectively. A classical encoding scheme is to 
encode all the possible matches that meet the local constraints as a binary string B (see 
Figure 10). Each element Bk of this binary string contains two records. The first one, which is 
static, represents a possible match between an edge i in the left image and an edge j in the 
right one. The second record, which takes binary values, indicates if the hypothesis that the 
edge i is matched with the edge j is valid or not. If this record is set to 1, then the edges i and 
j are matched; otherwise they are not matched. This encoding scheme is referred hereafter to 
as a binary encoding scheme since it allows manipulating binary chromosomes. Note that a 
binary chromosome can be represented as a NLxNR array M in which each element Mij

validates or not the hypothesis that the edge i in the left image matches the edge j in the 
right image (see Figure 11). If Mij = 1, then the edges are matched; otherwise, they are not 
matched. Note that only the possible matches, which respect the local constraints, are 
represented in this array. Figure 11 shows an example of a binary chromosome represented 
by an array. NbPix is the number of pixels in the linear images. 
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Figure 10. Binary chromosome 

As we can see in Figure 11, the binary encoding scheme may produce chromosomes with 
many ambiguities when multiple possible matches appear simultaneously on the lines and 
columns of their corresponding arrays. Therefore, a genetic algorithm based on this 
encoding scheme will not explore efficiently the solution space and, as a consequence, it will 
be necessary to perform a great number of iterations to reach an acceptable solution. 
Furthermore, handling binary chromosomes, which are large-sized chromosomes, requires 
an important computing effort. To overcome the limitations that appear when handling 
classical binary chromosomes, we propose a new encoding scheme, which produces 
compact chromosomes with less matching ambiguities. 

j

i

NbPix

NbPix

L

R

1

Mij

Figure 11. Array representation of a binary chromosome 

Let Tmax = {1,2,…,Nmax} and Tmin = {1,2,…,Nmin} be the edge lists to be matched, where 
Nmax = max (NL,NR) and Nmin = min (NL,NR) are the sizes of Tmax and Tmin, respectively. This 
means that if Nmax = NL, then Tmax = L and Tmin = R (and vice-versa). The new encoding 
scheme, referred hereafter to as an integer encoding scheme, consists in representing a 
solution as a chain C indexed by the elements of the list Tmax and which takes its values in 
the list {0}∪Tmin. The interpretation of the new encoding scheme is as follows. If Ci = 0, then 
the edge i in Tmax has no corresponding edge; otherwise, the edges i in Tmax and Ci in Tmin are 
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matched. As for binary chromosomes, the integer ones encode only possible matches, which 
respect the local constraints. Figure 12 gives an example of an integer chromosome, which 
represents a matching possibility between the edge lists L and R of Figure 11. In this 
example, Nmax = NR = 17 and Nmin = NL = 15, thus Tmax = R and Tmin = L.

1 2 4 3 3 5 5 13 13 12 12 13 12 12 12 0 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17i =

Ci =

Figure 12. Chromosome based on the integer encoding scheme 

Note that it is easy to represent an integer chromosome C as a NLxNR array M’. For i ∈ Tmax

and j ∈ Tmin, 1' =ijM  if Ci = j; otherwise 0' =ijM . Figure 13 illustrates the array 

representation of the integer chromosome of Figure 12. We can see in this figure that there 
are no ambiguities in the columns of this array. In general, if Tmax = L, then the integer 
encoding scheme produces chromosomes with no ambiguities in the lines of their 
corresponding arrays. In the opposite case, i.e., if Tmax = R, as in Figure 13, the integer 
encoding scheme produces chromosomes with no ambiguities in the columns of their 
corresponding arrays. 

15

1

171

NbPix

NbPix

Tmin

Tmax

1

Figure 13. Array representation of the integer chromosome of Figure 12 

The integer encoding scheme will therefore allow a genetic algorithm to explore more 
efficiently the solution space and, thus, to converge toward a better solution within a lower 
number of generations than when using the binary encoding scheme. Furthermore, the 
integer chromosomes, which are smaller than the binary ones, will require less computing 
time for their mutation and evaluation. In the examples given above, the integer 
chromosomes are 17-sized whereas the binary ones are 84-sized. 



Scene Reconstruction, Pose Estimation and Tracking 396

5.2 Integer Chromosome Evaluation 

A genetic algorithm needs a fitness function for evaluating the chromosomes. The fitness 
function is defined from the global constraints so that the best matches correspond to its 
minimum: 
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where C is the integer chromosome to be evaluated. Ku, Km, Ko and Ks are weighting positive 
constants, which are experimentally set to 5, 5, 5 and 1, respectively. 
The first term of the fitness function corresponds to the uniqueness constraint, where the 
quantity U(Ci,Ck) represents a penalty when the constraint is not respected, i.e., when the 
two edges i and k have a same corresponding one. This penalty is computed as follows: 
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The second term allows promoting chromosomes with an important number of matches. 
This term tends to a minimum when the number of matches is equal to Nmin. The quantity 
Z(Ci) is computed as follows: 
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The third term is used to respect the ordering constraint. The quantity O(Ci,Ck) represents a 
penalty when the order between the two pairs of edges (i,Ci) and (k,Ck) is not respected: 
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The fourth term supports the smoothness constraint. The quantity S(Ci,Ck) indicates how 
compatible are the two pairs of edges (i,Ci) and (k,Ck) with respect to the smoothness 
constraint. This compatibility measure is computed as follows: 
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where
kiCCX is the absolute value of the difference between the disparities of the pairs of 

edges (i,Ci) and (k,Ck), expressed in pixels. The non-linear function Q is identical to the one 



Global Techniques for Edge based Stereo Matching 397

described in section 4.1 (see Equation 7). The parameters α and ω are experimentally set to 1
and 20.

5.3 Genetic Stereo Matching Algorithm  

The genetic algorithm for the edge stereo correspondence problem consists first in 
generating randomly an initial population of chromosomes representing possible matches 
that satisfy the local stereo constraints. The evolution process is then performed during 
some generations thanks to reproduction and selection operations in order to highlight the 
best chromosome, which minimizes the fitness function. 
Starting from a current population in which each chromosome is evaluated, particular 
chromosomes are chosen with a selection probability proportional to the fitness value. These 
selected chromosomes are first reproduced using a single point crossover operation, i.e., two 
chromosomes are divided at a random position, and a portion of each chromosome is 
swapped with each other. The offspring chromosomes that are the result of the crossover 
operation are then submitted to a mutation procedure, which is randomly performed for 
each gene. The mutation of a gene number i of an integer chromosome C is performed by 
replacing its value by a new one chosen randomly in {0}∪Tmin–{Ci} (see section 5.1). 
After the crossover and mutation phases, a new population is obtained by means of two 
selection procedures: a deterministic selection and a stochastic one. These two selection 
procedures are applied to the set containing the chromosomes of the current population and 
those produced by the crossover and mutation operations. Based on an elitist strategy, the 
deterministic procedure is applied to select the best chromosomes, which represent 10% of 
the population. The remainder of the new population is obtained thanks to the stochastic 
selection, which is based on the same principle used to select chromosomes to be 
reproduced, i.e., with a selection probability proportional to the fitness value. 
The algorithm is iterated until a pre-specified number of generations is reached. Once the 
evolution process is completed, the optimal chromosome, which corresponds to the 
minimum value of the fitness function, indicates the pairs of matched edges. 

5.4 Genetic Parameter Setting 

It is known that the convergence time of a genetic algorithm depends generally on the size 
of the population and the number of generations. To obtain good matching results, the 
values of these two parameters are chosen by taking into account the complexity of the 
problem, i.e., the sizes of the stereo edge lists to be matched. Thus, if the complexity of the 
problem is important, it is necessary to set these parameters to large values in order to reach 
a good solution. Furthermore, our experiment tests show that when there is a large 
difference between the sizes of the stereo edge lists, large values are required for these two 
parameters to converge toward a good solution. Considering these two observations, we 
propose the following empirical expressions for setting the size of the population SizePop
and the number of generations Ngen:

RLRL NNWNNWSizePop −⋅++⋅= 21 )(  (18) 

SizePopWNgen ⋅= 3  (19) 
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where NL and NR are the total numbers of edges in the left and right images, respectively. 
W1, W2 and W3 are weighting positive constants, which are experimentally set to 5, 2 and 1,
respectively. Concerning the other genetic parameters, the crossover probability is set to 0.6
and the mutation probability is equal to the inverse of the number of genes in a 
chromosome. 

5.5 Performance Analysis of the Integer Encoding Scheme 

To compare the performances of the integer and binary encoding schemes, two genetic 
algorithms are run separately. The first one, named integer genetic algorithm (IGA), uses 
integer chromosomes. The second one, named binary genetic algorithm (BGA), manipulates 
binary chromosomes. The chromosome evaluation is performed using a common fitness 
function, which is adapted to the array representation (see section 5.1). This fitness function 
allows evaluating both integer and binary chromosomes. It is constructed from the global 
constraints so that the best matches correspond to its minimum: 
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where M is the array representation of the integer or binary chromosome to be evaluated. 
Ku, Km, Ko and Ks are weighting positive constants. Ω is the set of all possible matches 
between the edges in the lists L and R, i.e., the set of all pairs of edges (i,j) that satisfy the 
local constraints (see Equation 4). 
The two first terms of the fitness function correspond to the uniqueness constraint. These 
terms tend to a minimum when the sum of the elements lying in each line and each column 
of the array is equal to 1. The third term is used to enforce an important number of matches 
in the array. This term tends to a minimum when the number of matches is equal to Nmin = 
min(NL,NR). The fourth term is introduced to respect the ordering constraint. The coefficient 
Oijkl indicates if the order between the pairs of edges (i,j) and (k,l) is respected (see Equation 
5). The last term is used to support the smoothness constraint. The quantity Sijkl indicates 
how compatible are the two pairs of edges (i,j) and (k,l) with respect to the smoothness 
constraint (see Equation 7). 
The two genetic algorithms, i.e., the binary chromosome-based algorithm (BGA) and the 
integer chromosome-based algorithm (IGA), are applied to a couple of stereo linear images. 
There are 27 and 21 edges in the left and right linear images, respectively. Let us recall that 
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during their evolution, the two algorithms evaluate the chromosomes by using the fitness 
function Farray, associated with the array representation of the chromosomes (see Equation 
20).
Figure 14 illustrates the evolution of the fitness function Farray using the integer genetic 
algorithm. Figure 15 and 16 show the evolution of the fitness function Farray using the binary 
genetic algorithm, with different values for the population size and the number of 
generations. Table 1 gives the fitness function values corresponding to the best chromosome 
obtained by the integer (IGA) and binary (BGA) genetic algorithms. With a population of 
100 chromosomes, the fitness function reaches a minimum of -128 after 300 generations 
using the integer genetic algorithm. Using the same values for the population size and the 
number of generations, the fitness function reaches a minimum of 112 when applying the 
binary genetic algorithm. By increasing the population size and the number of generations 
to 300 and 600, respectively, the binary genetic algorithm leads the fitness function to a 
minimum value of -99 . 
As a conclusion to this discussion, the integer encoding scheme allows the genetic algorithm 
to explore more efficiently the solution space and, thus, to converge toward a better solution 
within a lower population size and a lower number of generations than when using the 
binary encoding scheme. 

0 50 100 150 200 250 300
-200

-100

0

100

200

300

400

500

600

700

Number of generations

M
in

im
u
m

 v
a
lu

e
 o

f 
th

e
 f

it
n
e
s
s
 f

u
n
c
ti
o
n

Figure 14. Evolution of the fitness function using the integer genetic algorithm 
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Figure 15. Evolution of the fitness function using the binary genetic algorithm, with a 
population of 100 chromosomes and 300 generations 
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Figure 16. Evolution of the fitness function using the binary genetic algorithm, with a 
population of 300 chromosomes and 600 generations 

Algorithm Population size and number of generations Fitness value 

100 chromosomes and 300 generations 112 
BGA 

300 chromosomes and 600 generations -99 

IGA 100 chromosomes and 300 generations -128 

Table 1.  Performance comparison between the integer and binary encoding schemes 

5.6 Genetic Stereo Matching Result 

The integer genetic processing of the stereo sequence of Figure 7 provides the reconstructed 
scene represented in Figure 17. When compared to the binary genetic algorithm, the integer 
genetic algorithm allows reducing significantly the computing time. Indeed, the processing 
rate is about 2.7 stereo linear images per second instead of 0.1 stereo linear images per 
second (see Table 2). 
The stereo matching results are comparable with those obtained by the neural stereo 
matching procedure (see Figures 9 and 17). However, the processing rate of the genetic 
stereo matching procedure is much lower when compared to the processing rate of the 
neural stereo matching algorithm (see Table 2).    

Figure 17. Integer genetic stereo reconstruction 
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Algorithm Processing rate 

BGA 0.1 pairs per second 

IGA 2.7 pairs per second 

Neural algorithm 90 pairs per second 

Table 2. Processing rate comparison between the neural algorithm, integer genetic algorithm 
and binary genetic algorithm 

6. Stereo Matching using a Multilevel Searching Strategy  

Stereo matching is a combinatorial problem. To reduce the combinatory (resulting from the 
number of the edges considered in the stereo images) we propose a multilevel searching 
strategy, which decomposes hierarchically the problem into sub-problems with reduced 
complexities. The hierarchical decomposition performs edge stereo matching at different 
levels, from the most significant edges to the less significant ones. At each level, the process 
starts by selecting the edges with the larger gradient magnitudes. These edges are then 
matched and the obtained pairs are used as reference pairs for matching the most significant 
edges in the next level. 
The multilevel searching strategy starts from level 1 in which all the left and right edges are 
considered. Let LL =0

1  and RR =0
1  be the lists of the edges extracted from the left and right 

images, respectively. We define from 0
1L  and 0

1R  a 0
1NL x 0

1NR  array 0
1MA  in which are 

represented all the possible matches that satisfy the local constraints (see Figure 18). 0
1NL

and 0
1NR  are the total numbers of edges in 0

1L  and 0
1R , respectively. 

j

i

NbPix

NbPix

1

LL 0
1=

RR 0
1 =

Figure 18. Array representation taking into account all the edges in the left and right images 
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The first step of the multilevel searching strategy consists of selecting, from 0
1L  and 0

1R ,
the edges with significant gradient magnitudes (see Figure 19). These selected edges are 
then matched and the obtained pairs, called reference pairs, define new sub-arrays, which 
are processed with the same searching strategy to match the most significant edges in level 2 
(see Figure 20). In the example of Figure 20, four reference pairs are obtained from the first 
level. Thus, five sub-arrays, namely 0

2MA , 1
2MA , 2

2MA , 3
2MA and 4

2MA , are considered 
in the second level. 

Left selected 

edges 

Right selected 

edges 

Figure 19. Level 1 of the multilevel searching strategy 

3
2MA

Matched pairs in the level 1  

0
2MA

2
2MA

1
2MA

4
2MA

Figure 20. Level 2 of the multilevel searching strategy 
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Let q
nMA  be the sub-array number q in the level n. Let q

nL  and q
nR  be the left and right 

edge lists from which the sub-array q
nMA  is defined. The significant edges considered for 

the matching in the level n are selected in q
nL  and q

nR  such that their gradient magnitudes 
satisfy the following conditions: 
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where minl and maxl (respectively minr and maxr) are the smallest and largest gradient 
magnitudes of the edges extracted from the left (respectively right) image. mgi and mgj are 
the gradient magnitudes of the left edge i and right edge j, respectively. 
Let q

nK  be the number of the matched pairs obtained from the matching of the selected 

edges in q
nL  and q

nR . These pairs, called reference pairs, define new sub-arrays 0
1+nMA ,

1
1+nMA ,…,

q
nK

nMA 1+ , which are processed in the level n+1 using the same principle for 
matching the most significant edges in this level. In order to optimize its running, the 
multilevel searching strategy is implemented recursively. 
The performance of the multilevel searching strategy is analyzed using the integer genetic 
algorithm, described in section 5. The using of the integer genetic algorithm with the 
multilevel searching strategy is referred hereafter to as a multilevel genetic algorithm 
(MiGA). On the other hand, the integer genetic algorithm performing stereo matching 
without the multilevel searching strategy, i.e., applied to all the edges extracted from the left 
and right linear images, is referred hereafter to as a basic genetic algorithm (BiGA). 
Applied to the stereo sequence of Figure 7 (see section 4.3), the multilevel genetic algorithm 
provides the reconstructed scene shown in Figure 21. When we compare the reconstructed 
scenes obtained from BiGA (see Figure 17) and MiGA (see Figure 21), we can see that the 
matching results are globally similar. To evaluate quantitatively the performances of these 
two algorithms, we compare the matching solutions by means of an objective function 
constructed from the three terms corresponding to the uniqueness, ordering and 
smoothness constraints in the fitness function, which is defined by Equation 13 (see section 
5.2). Figure 22 shows, for each genetic matching algorithm (BiGA and MiGA), the objective 
function values corresponding to the solutions obtained for each stereo pair of linear images 
of the sequence of Figure 7 (see section 4.3). We can see that the two algorithms behave 
almost identically except for the stereo pairs in the range [105,145] for which the multilevel 
scheme is less robust than the basic one. As we can see in Figure 7, some occlusions appear 
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in these stereo pairs (i.e. when the pedestrian hides one of the white lines to the left or right 
camera). The partial fail of the multilevel scheme is due probably to the edge selection 
procedure, which is performed before stereo matching at each level. Indeed, the selection 
procedure can select an edge from the left image while the corresponding one is not selected 
from the right image (and vice-versa). This situation occurs frequently in presence of 
occlusions. 

Figure 21. The reconstructed scene using the multilevel genetic algorithm 

Figure 22. Quantitative analysis between the basic and multilevel genetic algorithms 
This minor loss of robustness is the cost of the improvement in terms of processing time (see 
Table 3). With the multilevel searching strategy, the processing rate becomes 83 stereo pairs 
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per second, while it was only equal to 2.7 stereo pairs per second with the basic scheme. The 
same observations are noted when the multilevel searching strategy is associated with the 
neural stereo processing (see Figure 23 and Table 3). 

 Processing rate 

Method Without the multilevel 
searching strategy 

With the multilevel 
searching strategy 

Genetic algorithm 2.7 stereo pairs per second 83 stereo pairs per second 
Neural algorithm 90 stereo pairs per second 260 stereo pairs per second 

Table 3. Processing rate comparison between the basic and multilevel schemes 

Figure 23. Quantitative analysis between the basic and multilevel neural algorithms 

7. Voting Method Based Stereo Matching 

The multilevel searching strategy allows improving significantly the stereo processing time. 
However, it may cause some difficulties because of the selection procedure applied at each 
level. Indeed, this procedure may select an edge from an image while the true 
corresponding one is not selected from the other image. Considering these difficulties, we 
propose an alternative stereo matching approach, which is based on a voting strategy. 

7.1 Problem Mapping 

Let L and R be the lists of the edges extracted from the left and right linear images, 
respectively. Let NL and NR be the numbers of edges in L and R, respectively. The edge 
stereo matching problem is mapped onto a NLxNR array M, called matching array, in which 
an element Mlr explores the hypothesis that the edge l in the left image matches or not the 
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edge r in the right image (see Figure 24). We consider only the elements representing the 
possible matches that met the position and slope constraints. For each element Mlr

representing a possible match (l,r), we associate a score SMlr, which is set initially to zero. 

l
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Right linear image
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l
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a
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i
m
a
g
e

 Mlr

Figure 24. Matching array. The white circles represent the possible matches that met the 
position and slope constraints. The black circles represent the impossible matches that do 
not respect the position and slope constraints 

7.2 Score Based Stereo Matching 

The stereo matching process is performed thanks to a score-based procedure, which is based 
on the global constraints. The procedure is applied to all the possible matches that meet the 
local constraints, i.e., the position and slope constraints. This procedure consists in assigning 
for each possible match a score, which represents a quality measure of the matching 
regarding the global constraints. Let Mlr be an element of the matching array, representing a 
possible match between the edges l and r in the left and right images, respectively. The 
stereo matching procedure starts by determining among the other possible matches those 
that are authorized to contribute to the score SMlr of the possible match Mlr. The contributor 
elements are obtained by using the uniqueness and ordering constraints: an element Ml’r’ is 
considered as a contributor to the score of the element Mlr if the possible matches (l,r) and 
(l’,r’) verify the uniqueness and ordering constraints (see Figure 25). The contribution of the 
contributors to the score of the element Mlr is then performed by means of the smoothness 
constraint. For each contributor Ml’r’, the score updating rule is defined as follows: 

)()()( ''rlrllrlr XGpreviousSMnewSM +=  (23) 

where Xlrl’r’ is the absolute value of the difference between the disparities of the pairs (l,r)
and (l’,r’), expressed in pixels. G is a non linear function, which calculates the contribution of 
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the contributors. This function is chosen such that a high contribution corresponds to a high 
compatibility between the pairs (l,r) and (l’,r’) with respect to the smoothness constraint, i.e. 
when Xlrl’r’ is close to 0, and a low contribution corresponds to a low smoothness 
compatibility, i.e. when Xlrl’r’ is very large. This function is chosen as: 

X
XG

+
=

1
1)(  (24) 

By considering the different steps of the score-based procedure, the final score FSMlr of the 
possible match Mlr can be computed as follows: 

Ω∈
==

lrrl
rlrllrlr XGfinalSMFSM

)','(
'' )()(  (25) 

where Ωlr is the set of all the possible matches (l’,r’) such that the pairs (l,r) and (l’,r’) satisfy 
the uniqueness and ordering constraints. 
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Figure 25. Determination of the contributors for calculating the score of a possible match: 
The contributors to the score of the possible match Mlr are the elements (white circles) 
situated in the gray area of the matching array 

7.3 Extraction of the Correct Matches 

To determine the correct matches, a procedure is designed to select the possible matches for 
which the final score is maximum. This is achieved by selecting in each row of the matching 
array the element with the largest score. However, this procedure can select more than one 
element in a same column of the matching array. To discard this configuration, which 
corresponds to multiple matches, the same procedure is applied to each column of the 
matching array. The elements selected by this two-steps procedure indicate the correct 
matches. 
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7.4 Voting Stereo Matching Result  

The processing of the stereo sequence of Figure 7 (see section 4.3) using the voting 
procedure provides the reconstructed scene shown in Figure 26. We can see that the stereo 
matching results are very similar with those obtained by the neural and genetic algorithms 
(see Figures 9 and 17). The advantage of the voting technique is that it is fast, with a very 
high speed processing (see Table 4). Furthermore, the neural and genetic stereo techniques 
use many coefficients, which are usually difficult to adjust. The voting method is not 
confronted to this problem since it does not depend on any parameter. 

Figure 26. Reconstructed scene using the voting stereo technique 

Method Processing rate 

Neural network based method 90 stereo pairs per second 

Genetic algorithm based method 2.7 stereo pairs per second 

Voting method 220 stereo pairs per second 
Table 4. Processing rate comparison between the neural, genetic and voting techniques  

8. Conclusion 

We proposed global techniques for edge stereo matching. The problem is formulated as a 
constraint satisfaction problem where the objective is to highlight a solution for which the 
matches are as compatible as possible with respect to specific constraints: local constraints 
and global ones. The local constraints are used to discard impossible matches so as to 
consider only potentially acceptable pairs of edges as candidates. The global constraints are 
used to evaluate the compatibility between the possible matches in order to determine the 
best ones. 
In the first technique, the problem is turned into an optimization task where an objective 
function, representing the global constraints, is mapped and minimized thanks to a 
Hopfield neural network. This neural optimization method constitutes a local searching 
process, and thus, it does not always guarantee to reach a global minimum. As an 
alternative, we suggested to use genetic algorithms, which span the solution space and can 
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concentrate on a set of promising solutions that reach the global optimum or converge near 
the optimal solution. A specific encoding scheme is presented and the analysis shows its 
efficiency to explore the solution space. However, the genetic technique necessitates a lot of 
time computation, and thus, it cannot be exploited for real-time applications such as 
obstacle detection in front of a moving vehicle. In order to improve the time computation, 
we proposed a multilevel searching strategy, which decomposes the stereo matching 
problem into sub-problems with reduced complexities. This searching strategy performs 
stereo matching from the most significant edges to the less significant ones. In each level, the 
procedure starts by selecting significant edges, using their gradient magnitude. The selected 
edges are then matched and the obtained pairs are used as reference pairs for matching the 
remaining edges according the same principle. The multilevel searching strategy allows 
improving significantly the stereo processing time. However, the limitation is that, in each 
level, the selection procedure may select an edge from an image while the true 
corresponding one is not selected from the other image. Considering this difficulty, we 
proposed a voting stereo matching technique, which consists to determine for each possible 
match a score based on the combination of the global constraints. This technique provides 
very similar stereo matching results with a high speed processing, compatible with real-time 
obstacle detection. Furthermore, unlike the neural and genetic stereo methods, the voting 
technique does not use any parameter, and hence, does not need any adjustment. 
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1. Introduction    

The human brain can fuse two slightly different views from left and right eyes and perceive 
depth. This process of stereopsis entails identifying matching locations in the two images 
and recovering the depth from their disparity. This can be done only approximately: 
ambiguity arising from such factors as noise, periodicity, and large regions of constant 
intensity makes it impossible to identify all locations in the two images with certainty. There 
has been much work on stereo (Ayache, 1991; Grimson, 1981; Marapane & Trivedi, 1994). 
The issues in solving this problem include  
i how the geometry and calibration of the stereo system are determined, 
ii what primitives are matched between the two images, 
iii what a priori assumptions are made about the scene to determine the disparity, 
iv how the whole correspondence, i.e. the disparity map, is computed, and 
v how the depth is calculated from the disparity. 
In this chapter, we assume that (i) is solved, and that we know the stereo geometry exactly, 
including the correspondence between epipolar lines in the two images. Answering 
question (v) involves determining the camera parameters, triangulation between the 
cameras, and an error analysis, for which we refer the reader to (Faugeras, 1993). 
In this chapter, we focus on the remaining issues (ii), (iii), and (iv). Main contributions of 
this chapter to these problems are summarized as follows: 
ii In order to find corresponding points in the two images, an algorithm must have 

some notion of similarity, or likelihood that a pair of points in fact represents the 
same point in the scene. To estimate this likelihood, various features can be used, 
e.g., intensity, edges, junctions (Anderson, 1994; Malik, 1996), and window features 
(Okutomi & Kanade, 1993). Since none of these features is clearly superior to others 
in all circumstances, using multiple features is preferable to using a single feature, if 
one knows when to use which feature, or what combination of features. However, 
features are difficult to cross-normalize; how can we compare, for instance, the 
output from an edge matching with the one from correlation matching? We would 
like not to have to cross-normalize the output of the features, and still be able to use 
multiple features. We present a new approach that uses geometric constraints for 
matching surface to select, for each set of mutually-exclusive matching choices, 
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optimal feature or combination of features from multiscale-edge and intensity 
features.

iii Various algorithms, as in the cooperative stereo (Marr & Poggio, 1976), have 
proposed a priori assumptions on the solution, including smoothness to bind nearby 
pixels and uniqueness to inhibit multiple matches. Occlusions and discontinuities 
must also be modelled to explain the geometry of the multiple-view image 
formation. There is now abundant psychophysical evidence (Anderson, 1994; Gillam 
& Borsting, 1988; Nakayama & Shimojo, 1990) that the human visual system does 
take advantage of the detection of occluded regions to obtain depth information. The 
earliest attempts to model occlusions and its relation to discontinuities (Belhumeur 
& Mumford, 1992; Geiger, Ladendorf, & Yuille, 1995) had a limitation that they 
restrict the optimization function to account only for interactions along the epipolar 
lines. Another aspect of the stereo geometry is the interdependence between 
epipolar lines. This topic was often neglected because of a lack of optimal algorithms 
until recently, when graph-based algorithms made it feasible to handle this in an 
energy-optimization scheme (Boykov, Veksler, & Zabih, 2001; Ishikawa & Geiger, 
1998; Roy, 1999; Roy & Cox, 1998). We show that it is possible to account for all of 
these assumptions, including occlusions, discontinuities, and epipolar-line 
interactions, in computing the optimal solution. 

iv To compute the most likely disparity map given the data, we define a Markov 
Random Field energy functional and obtain the MAP estimation globally and 
exactly. The energy minimization is done using a minimum-cut algorithm on a 
directed graph specifically designed to account for the constraints described above in 
(iii). 

In the next section, we discuss the general probabilistic model of stereopsis, including the 
optimization space and various constraints, and introduce a general energy minimization 
formulation of the problem. In section 3, we introduce the more specific form of first-order 
Markov Random Field energy minimization problem that we actually solve. We devise a 
unique graph structure in section 4 to map the MRF problem to a minimum-cut problem on 
the graph, so that we can solve it exactly and globally. In section 5, we explain how various 
features can be used to compare points in the two images. Finally, we show experimental 
results in section 6. 

2. Energy Formulation 

In this section, we discus the probabilistic model of stereopsis and the Maximum A 
Posteriori (MAP) optimization of the model. First we define the space of parameters we 
wish to estimate, that is, the space of disparity maps. Then we formulate a model of the 
causal relationship between the parameters and the resulting images as a conditional 
probability distribution. In this way, the whole system is represented by the probability that 
different values of the parameters occur a priori and the probability that the image occurs 
under the assumption that the parameters have some given value. Then, for a given pair of 
images, we look for the disparity map that maximizes the probability that it occurs and 
gives rise to the images. We then define an energy minimization formulation that is 
equivalent to the MAP estimation. 
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2.1 Parameter Space 

In binocular stereo, there are left and right images IL and IR ; the parameter to be estimated is 
the matching between visible sites in the two images, which is directly related to the depth 
surface (3D scene) S in front of the cameras. We denote by ÎL and ÎR the domains of the 
image functions IL and IR; here we are assuming the two domains are identical rectangles. A 
match between the two images can naturally be represented as a surface in a 4D space ÎL×ÎR,
which is called the match space. A point in the match space is a pair of points in the left and 
right images, which is interpreted as a match between the points. Note that the parameter 
space in which we seek the best solution is not the match space, but the space of surfaces 
therein (with certain constraints.) 
Two constraints in the geometry of stereo make the parameter space smaller. 

Epipolar Constraint 
Each point in the scene goes through a unique plane in the 3D space defined by it and the 
two focal points of the cameras; thus the points sharing such a plane form a line on each 
image. Hence each domain is stratified by such epipolar lines and there is a one-to-one 
correspondence between epipolar lines on the two images (see Fig. 1.) 
Because of the epipolar constraint, we can assume that the surface in the match space is 
always included in the subspace 

{(xL,xR)∈ÎL×ÎR | xL and xR belong to the corresponding epipolar line}. 

Thus, a match can be seen as a surface in a 3D space. In the rest of the chapter, the two 
images are always assumed to be rectified, i.e., points that belong to corresponding epipolar 
lines have the same y-coordinate in both images; a match occurs only between points with 
the same y-coordinate. Thus, a match is represented as a surface in the 3D space {(l,r,y)},
where {(l,y)} and {(r,y)} are the coordinates of the left and right image domains ÎL and ÎR

respectively.

Figure 1. Each point in the scene goes through a unique plane in the 3D space defined by the 
two focal points of the cameras and itself; thus the points sharing such a plane form a line on 
each image. Hence each image is stratified by such epipolar lines and there is a one-to-one 
correspondence between epipolar lines on the two images. 

3D line Left frame Right frame 

Focus Focus 

Epipolar line 
Right feature 
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Ordering Constraint 
There is also another constraint known as the ordering constraint (Baker & Binford, 1981; 
Marr & Poggio, 1976). It states that if a point moves from left to right on the epipolar line in 
the left image, the corresponding point also moves from left to right in the right image. This 
can be characterized as a local condition (monotonicity constraint) on the tangent plane of 
the surface representing the match: the ratio of change in l by r must stay positive 
everywhere on the surface. This is not always strictly true for the real 3D scene in the sense 
that there can be a surface such that corresponding points move from left to right in the left 
image and from right to left in the right image. For instance, a plane that equally and 
perpendicularly divides the line segment between focal points would have this property. 
However, this is a rare situation and even the human visual system cannot handle this 
anyway. The ordering constraint further reduces the size of the search space. Note that the 
epipolar and ordering constraints together ensure the uniqueness constraint. This is because 
any point in one image is restrained to match only points on one epipolar line in the other 
image, and these potential points are strictly ordered so that it is impossible to match more 
than one point without violating the ordering constraint. 

2.2 Prior Model 

The prior model is an a priori statistical assumption about the 3D scenes that reveals which 
surfaces the system expects to find most often in a scene. It is described as a prior 
probability distribution P(S) that gives a probability to each possible 3D scene output S of 
the process. In particular, the prior models how any ambiguity is resolved. Belhumeur 
(Belhumeur, 1996) analyzed stereo prior models in explicitly Bayesian terms. As in other 
low-level problems, commonly used prior models are local. They generally favour small 
disparity changes (fronto-parallel surfaces) and small disparity curvature (smooth surfaces). 
In our formulation, we enforce the ordering constraint as the prior model by giving a very 
low probability to any surface that violates this constraint. 

2.3 Image Formation Model 

The image formation model describes what images the cameras record when a 3D scene S is 
presented in front of them. It is basically a photometric model and can be expressed as a 
conditional probability distribution P(IL, IR|S) of forming images IL and IR, given a 3D scene 
S.
Also modelled in the image formation model are occlusions, or appearances of scene 
locations in only one of the two images, which correspond to discontinuities in the match 
surface or a match surface that is perpendicular to the l or r axis, depending on how this 
situation is modelled (see Fig. 2.) It has been shown that the detection of occlusions is 
especially important in human stereopsis (Anderson, 1994; Nakayama & Shimojo, 1990). 
Occlusions have also been modelled in artificial vision systems (Belhumeur & Mumford, 
1992; Geiger, Ladendorf, & Yuille, 1995). 
Any effect on the images due to the shape and configuration of the 3D surface can be 
modelled in the image formation model. For instance, intensity edges and junctions can be 
seen as cues for the depth discontinuities. The significance of junctions in stereo vision has 
been pointed out (Anderson, 1994; Malik, 1996). 
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  (a)  

    
(b)

Figure 2. (a) A polyhedron (shaded area) with self-occluding regions and with a 
discontinuity in the surface-orientation at feature D and a depth discontinuity at feature C. 
(b) A diagram of left and right images (1D slice) for the image of the ramp. Notice that 
occlusions always correspond to discontinuities. Dark lines indicates where the match 
occurs. 

2.4 MAP Formulation 

Given the left and right images IL and IR, we want to find the surface S in the match space 
that maximizes the a posteriori probability P(S|IL,IR). By Bayes' rule,  
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P(S|IL,IR) = .

Since IL and IR are fixed, this value can be optimized by maximizing the P(IL,IR|S)P(S) using 
the prior model P(S) and the image formation model P(IL,IR|S).
In the next section, we define the prior and image-formation energy functionals as the 
logarithms of the probability functionals so that 

   P(S) =

P(IL,IR|S) =

Here, the normalization factor Z1 and Z2 are defined as 

Z1 = 

 

Z2(S) =

Then the maximization of the probability P(IL,IR|S)P(S) is equivalent to the minimization of 
the energy 

 E(IL,IR,S) = E1(S ) + E2(IL,IR,S ) − log Z2(S). (1) 

The last term will be irrelevant since we define the energy E2(IL,IR,S) so that Z2(S) is constant. 

3. Stereo Energy Functionals 

In this section, we define the energy functionals that appeared in the preceding section. 

3.1 Markov Random Field 

First, we remind the reader of the Markov Random Field (MRF). 
A graph G = (V,E) consists of a finite set V of vertices and a set E ⊂ V×V of edges. An edge 
(u,v)∈E is said to be from vertex u to vertex v. An undirected graph is a graph in which all 
edges go both ways: 

(u,v)∈E ⇔ (v,u)∈E.

A clique is a set of vertices in an undirected graph in which every vertex has an edge to 
every other vertex.  
An MRF consists of an undirected graph G = (V,E) without loop edges (i.e., edges of the 
form (v,v)), a finite set L of labels, and a probability distribution P on the space Z = LV of 
label assignments. That is, an element X of Z, sometimes called a configuration of the MRF, 
is a map that assigns each vertex v a label Xv in L. Let Nv denote the set of neighbours 
{u∈V|(u,v)∈E} of vertex v. Also, for an assignment X∈Z and S⊂V, let XS denote the event 
{Y∈Z |Yv = Xv, for all v∈S}, that is, the subset of Z defined by values at vertices in S. By 
definition, the probability distribution must satisfy the condition: 

−E2(IL,IR,S)e
Z2(S)

1

−E2(IL,IR,S)e
IL,IR
Σ

−E1(S)e
S
Σ

−E1(S)e
Z1

1

P(IL,IR|S)P(S)
P(IL,IR)
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Figure 3. A cyclopean coordinate in the matching space. An epipolar slice is shown. 

P(X) > 0  for all X∈Z

P(X{v}|XV \{v}) = P(X{v}|XNv).

This condition states that the assignment at a vertex is conditionally dependent on other 
assignments only through its neighbours.  
Note that the MRF is a conditional probability model. A theorem (Besag, 1974; Kinderman & 
Snell, 1980) connects it to a joint probability model: a probability distribution P on Z is an 
MRF exactly when it is a Gibbs distribution relative to G:

P(X) ~ ,  

E(X) = ,

where Γ  denotes the set of cliques in G and EC a function on Z with the property that EC(X)
depends only on values of X on C.
The simplest interesting case is when only the edges and vertices, the two simplest kinds of 
cliques, influence the potential: 

E(X) = + .

This is called a first order MRF, and our stereo energy formulation is an example of it. 

3.2 Stereo MRF 

As explained in 2.1, the parameter space for stereo is the space of surfaces in the product 
space ÎL×ÎR restricted by the epipolar constraint (the match space). The match space has a 
natural coordinate system (l,r,y), where y parameterises epipolar lines, and l and r are the 
coordinates on the epipolar lines in the left and right images, respectively. We represent 
occlusions, or appearances of scene locations in only one of the two images, by a match 
surface that is perpendicular to the l or r axis. 
We convert the (l,r,y) coordinate system into a “cyclopean” coordinate system (d,t,y), where 
d = r − l and t = r + l (see Fig. 3.) Because of the monotonicity constraint, the surface in this 
representation has a unique point for each (t,y) pair, i.e., it is the graph of some function on 
the (t,y) plane that gives a value d ⎯ the disparity ⎯ at each point. 
At this point, we also move to the discrete notation so that we can formulate it as a first 
order MRF. We define the MRF by considering a graph embedded in the t-y plane that has 
nodes at integral lattice points and a label set consisting of integral disparity values d. The 
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g(u,v,Xu,Xv)
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Σ h(v,Xv)

v∈V
Σ

EC(X)
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graph G for the MRF has a vertex for each pair of integral t and y in the range, and has the 
standard four-neighbor structure: the vertex for (t,y) is connected to the vertices for the 
coordinates (t+1,y), (t−1,y), (t,y+1), and (t,y−1), except at the boundary. The Label set L
consists of integral disparity values; thus the configuration X is a function d(t,y) that gives 
an integral disparity at each vertex of the graph. We denote the configuration by d rather 
than X. We define the first-order MRF energy functional as follows: 

                      E(d) = E1(d) + E2(IL,IR,d)

   = + , (2) 

where d assigns a value in L to each vertex of the graph, i.e., a (t,y) pair. 
The prior term is defined by 

(3)

where a, b, c, and K are positive constants. A change of disparity d across the epipolar line (y
≠ y’) has a penalty proportional to the change. A disparity change that is larger than 1 along 
the epipolar line (y = y’) means a violation of the monotonicity constraint (e.g.,  if d changes 
from 0 to 3 as t changes from 2 to 3, l changes from 1 to 0 and r changes from 1 to 3, violating 
the monotonicity) and has a penalty K. We make K very large in order to enforce the 
monotonicity constraint by making it impossible for d to change by more than 1 as t changes 
its value by 1. 
A change of d by 1 as t changes by 1 along the epipolar line has a penalty b or c according to 
the parity (even or odd) of t+d. This might seem odd, but it is because of the discretization: 
the parity of t and d must coincide for there to be corresponding integral l and r. Thus only 
those pairs (t,d) with t+d even represent the actual matches of left and right pixels; let us call 
them the real matches and call the ones with odd t+d the dummy matches. For a real match 
(t,d), if t and d both change by 1, the result is still a real match. In this case, either l or r stays 
the same while the other changes by 1 (for example, the change (t,d): (0,2)→(1,3) corresponds 
to (l,r): (2,1)→(2,2).) This represents the discrete case of tilted surface, i.e., one discretized 
interval in one image corresponding to two intervals in the other image. To this, we give a 
penalty of the positive constant b. If, on the other hand, (t,d) is a dummy match (i.e., t+d is 
odd) and both t and d change by 1, it means there is a value of either l or r that does not have 
a match. For example, the change (t,d): (1,2)→(2,3), corresponding to (l,r): (0.5,1.5)→(0.5,2.5), 
implies that there is no real match that corresponds to r = 2. This models an occlusion, to 
which we give a penalty of the positive constant c.
 The image formation model is given by the following term: 

0 if d1 = d2,
a|d1−d2| if y ≠ y’,

g(t,y,t’,y’,d(t,y),d(t’,y’)) = b if y = y’, |d1−d2|= 1, t + d1 is even,
c if y = y’, |d1−d2|= 1, t + d1 is odd,
K if y = y’, |d1−d2|> 1,

h(t,y,d(t,y))
(t,y)
Σg(t,y,t’,y’,d(t,y),d(t’,y’))

(t,y),(t’,y’): neighbours
Σ
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                           h(t,y,d) =

   
(4)

where f (I,x,y) gives a feature at the point (x,y) in the image I and dist( f1, f2) gives a measure 
of the difference of two features f1 and f2. We will use a number of different functions f(I,x,y)
and dist( f1, f2), as explained in section 5. 
Note that for this energy to be equivalent to the MAP energy (1), the normalization factor 

must be constant regardless of the disparity map d, so that it does not affect the outcome of 
the optimization. This essentially requires the total space of possible image pairs to be 
neutral with respect to the feature f, which usually is the case. 

4. Global Energy Optimization via Graph Cut 

In this section, we explain the stereo-matching architecture that utilizes the minimum-cut 
algorithm to obtain the globally optimal matching, with respect to the energy (2), between 
the left and right images. 

4.1 The Directed Graph 

We devise a directed graph and let a cut represent a matching so that the minimum cut 
corresponds to the optimal matching. It is a modification of the general MRF optimization 
algorithm introduced in (Ishikawa, 2003). The formulation explicitly handles the occlusion 
and is completely symmetric with respect to left and right, up to the reversal of all edges, 
under which the solution is invariant. 
Let M be the set of all possible matching between pixels, i.e., M = {(l,r,y)}. We define a 
directed graph G = (V,E) as follows: 

V = { uy
l r|(l,r,y)∈M } ∪ { vy

lr|(l,r,y)∈M } ∪ {s, t}

E = EM ∪ EC ∪ EP ∪ EE

In addition to the two special vertices s and t, the graph has two vertices uy
l r and vy

l r for each 
possible matching (l,r,y)∈M. The set E of edges is divided into subsets EM, EC, EP, and EE,
each associated with a weight with a precise meaning in terms of the model (2), which we 
explain in the following subsections. 
As before, we denote a directed edge from vertex u to vertex v as (u,v). Each edge (u,v) has a 
nonnegative weight w(u,v) ≥ 0. A cut of G is a partition of V into subsets S and T= V \ S such 
that s∈S and t∈T (see Fig. 4.) When two vertices of an edge (u,v) is separated by a cut with 
u∈S and v∈T, we say that the edge is in the cut. This is the only case that the weight w(u,v) of 
the edge contributes to the total cost, i.e., if the cut is through the edge (u,v) with u∈T and 
v∈S, the cost is w(v,u), which is in general different from w(u,v). It is well known that by 

dist( f (IL,       , y), f (IR,       , y) ), if t + d is even,

0 otherwise, 
2

t+d
2

t−d
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solving a maximum-flow problem one can obtain a minimum cut, a cut that minimizes the 
total cost Σu∈S, v∈T w(u,v) over all cuts. 
Our method is to establish a one-to-one correspondence between the configurations of the 
stereo MRF and the cuts of the graph. By finding the minimum cut, we will find the exact 
solution for the MRF energy optimization problem. 
Let us now explain each set of edges EM, EC, EP, and EE.

4.2 Matching Edges 

Each pair of vertices are connected by a directed edge (uy
lr, vy

l r) with a weight 

w(uy
l r, vy

l r) = h(r+l,y,r− l)= dist( f (IL, l, y), f (IR,r, y)).

Figure 4. An epipolar slice of the graph representing the stereo model. The full graph is 
represented in 3D, with the third axis parameterising the epipolar lines. A cut of the graph can
be thought of as a surface that separates the two parts; it restricts to a curve in an epipolar slice.
The optimal cut is the one that minimizes the sum of the weights associated with the cut edges.
In this example, the cut shown yields the matches (l,r) = (0,0), (1,1), (3,2), and (4,3); the cut also 
detects an occlusion at grey (white) pixel 2 (4) in the left (right) image.  
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This edge is called the matching edge and we denote the set of matching edges by EM:

EM = {(uy
l r, vy

l r) | (l,r,y)∈M }.

If a matching edge (uy
l r, vy

l r) is in the cut, we interpret this as a match between pixels (l,y) and 
(r,y). Thus, the sum of the weights associated with the matching edges in the cut is exactly E2

in (2). This is the correspondence between the match surface and the graph cut: 
Convention. Given any cut of G, a matching edge (uy

l r, v y
l r) in the cut represents a 

match between pixels (l,y) and (r,y).
Fig. 4. shows the nodes and matching edges on an epipolar line. The cut shown represents a 
match {(l,r)} = {(0,0), (1,1), (3,2), (4,3)}. Note that pixel 2 in the left image has no matching 
pixel in the right image. Pixel 4 in the right image also has no match; these pixels are 
occluded. This is how the formulation represents occlusions and discontinuities, whose 
costs are accounted for by penalty edges.

4.3 Penalty Edges (Discontinuity, Occlusions, and Tilts) 

Penalty edges are classified in four categories: 
EP = EL ∪ E’L ∪ ER ∪ E’R,
EL = {(vy

l r , uy
l (r+1))} ∪ {(s, uy

l0)} ∪ {(vy
l (N−1), t)}, 

E’L = {(uy
l (r+1), vy

lr)},

ER = {(vy
lr , uy

(l −1)r )} ∪ {(s, uy
(N−1)r )} ∪ {(vy

0r , t)}, 

E’R = {(uy
(l −1)r, vy

lr)},
where the indices run the whole range where indexed vertices exist and N is the width of 
the images. Edges in EL are in the cut whenever a pixel in the left image has no matching 
pixel in the right image. If pixel (l,y) in the left image has no match, exactly one of the edges 
of the form (vy

l r , uy
l (r+1)), (s, uy

l 0), or (vy
l (N−1) , t) is in the cut (see Fig. 5(a).) By setting the weight 

for these edges to be the constant c in the definition of the prior term (3) of the energy 
functional, we control the penalty of occlusion/discontinuity according to the energy 
functional. Similarly, an edge in ER corresponds to an occlusion in the right image. 
Edges in E’R are cut when a pixel in the right image matches two or more pixels in the left 
image. (Fig. 5(b).) This corresponds to a tilted surface. These edges have the constant weight 
of b in the definition of the prior term (3). 

4.4 Epipolar edges 

Epipolar edges are the only edges across epipolar lines. They simply connects vertices with 
the same (l,r) in both directions: 

EE = {(uy
l r, uy

l   
+
r
1 )} ∪ {(uy

l
+
r
1, uy

lr)} ∪ {(vy
l r, vy

l   
+
r
1 )} ∪ {(vy

l
+
r
1, vy

l r)}. 

where the indices run the whole range where indexed vertices exist. The weight a, from the 
definition of the prior term (3), of an epipolar edge controls the smoothness of the solution 
across epipolar lines. 
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Figure 5.  (a) A close-up of the Fig. 4. The left-pixel 2 (the middle) does not have a matching 
right-pixel, i.e., it is occluded. (b) Another possibility, where the left-pixel 1 and 2 match the 
same right pixel; this happens when the surface is tilted. Note the different kinds of the 
penalty edges are cut in the two cases. 

4.5 Constraint edges 

Constraint edges are for enforcing the monotonicity constraint and defined as follows: 

EC = {(uy
lr, uy

(l+1)r)} ∪ {(uy
l r, uy

l(r−1))} ∪ {(vy
lr, vy

(l+1)r)} ∪ {(vy
l r, vy

l(r−1))}.

where, as always, the indices run the whole range where indexed vertices exist. The weight 
of each constraint edge is set to K from the prior term (3) of the energy. This corresponds to 
a disparity change that is larger than 1 along the epipolar line, which violates the 
monotonicity constraint. We make K very large to enforce the monotonicity constraint. In 
Fig. 4, constraint edges are shown as dotted arrows. It can be seen that whenever the 
monotonicity constraint is broken, one of the constraint edges falls in the cut. Note that, 
because the edges have directions, a constraint edge prevents only one of two ways to cut 
them. This cannot be done with undirected graphs, where having an edge with a very large 
weight is akin to merging two vertices, and thus meaningless. 
This concludes the explanation of the graph structure and the edge weights. We have 
defined the graph and the weights so that the value of a cut exactly corresponds to the 
stereo MRF energy functional (2) via the interpretation of the cut as a stereo matching and 
MRF configuration that we defined in 4.2. 
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A constant t line 

“Light cone”

Figure 6. An epipolar slice of the match space. The matching surface appears as a curve here. 
The monotonicity constraint means that this curve crosses every constant t line once. 

5. Feature Selection 

In this section, we deal with the image formation local energy h(t,y,d) in (4). In order to find 
corresponding points in the two images, an algorithm must have some notion of similarity, 
or likelihood that points in each image correspond to one another. To estimate this 
likelihood various features are used, e.g., intensity difference, edges, junctions, and 
correlation. Since none of these features is clearly superior to the others in all circumstances, 
using multiple features is preferable to using a single feature, if one knows which feature, or 
which combination of features, to use when. Unfortunately, features are difficult to cross-
normalize. How can we compare the output from an edge matching with one from a 
correlation matching? We would like not to have to cross-normalize the outputs of the 
feature matchings, and still be able to use multiple features. Here, we use a consequence of 
the monotonicity constraint to select an optimal feature or combination of features for each 
set of mutually exclusive matching choices. 
In the energy functional (2), the local feature energy function h(t,y,d) gives a measure of  
difference between the points ((t − d)/2, y) in the left image and ((t + d)/2, y) in the right 
image. We assume that it gives a nonnegative value; a smaller value means a better match. 
In what follows in this section, the y coordinate will be omitted. Also, note that these 
functions of course depend on the images, although the notation does not show this 
explicitly. 
Suppose we have a finite set Φ of local feature energy functions. On what basis should we 
choose from the set? Different features are good in different situations. For instance, edges 
and other sparse features are good for capturing abrupt changes of depth and other salient 
features, but can miss gradual depth change that can instead be captured by using dense 
features. What one cannot do is to choose functions at each point in the match space; the 
values of different local energy functions are in general not comparable. In general, the same 
local function must be used at least over the set from which a selection is made. In other 
words, across these sets of selections, different functions can be used. Then, what is the set 
of selections? Fig. 6. shows an epipolar slice of the match space. The surface that represents 
the matching appears as a curve here. In this figure, the monotonicity constraint means that 
the tangent vector of the curve must reside in the “light cone” at each point of the matching 
curve. This implies that the matching curve crosses each constant t line at exactly one point. 
This means that on each such line the matching problem selects one point (the match) from 
all the points on the line. Thus we can choose one particular local energy function on this 
line and safely choose a different one on another line. In the following, we will call these 
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lines the “selection lines.” The partition of the match space into selection lines is minimal in 
the sense that, for any sub-partition, the selection of the energy function cannot be local to 
each partition. There are, however, other minimal partitions with this local-selection 
property. For instance, the match can be partitioned into other “space-like” lines with an l to 
r tilt different from −1 : 1, as long as the ratio is negative. 

5.1 Selection Rule 

As we have said, on each selection line, we are free to choose any local energy function. 
Note that the information that we can easily utilize for the selection is limited. For instance, 
we cannot use any information concerning the matching surface that is eventually selected, 
as that would lead to a combinatorial explosion. Here, we employ a least “entropy” rule to 
select the energy function. It chooses the energy function that is most “confident” of the 
match on each selection line. After all, an energy function that does not discriminate 
between one match and another is of no use. Going to the other extreme, when we have 
ground truth, an energy function that gives the true match the value zero and every other 
match the value positive infinity is obviously the best; the energy function knows which 
match to choose with certainty. This intuition leads us to evaluate how ``sure'' each energy 
function is.  
Let us define an ``entropy'' functional for a positive-valued function h on {d = D0, D0 + 1, …,
D1}×{t} by: 

Et(h) = ,

Ht(h) = − .

This functional Ht gives a measure of the degree of concentration of the function h: it is 
smaller when h is more concentrated (see Fig. 7.) The more peaked the function, the lower 
the value of the functional. We use this functional to choose a preferred local energy 
function for each selection line. To use this functional for our purposes, where we need a 
dipped function rather than a peaked one, we invert the function and feed the result to the 
functional.
Thus, for each selection line, we choose the function h with the least value of Ht(hmaxt−h),
where hmaxt is the maximum value of h on the selection line corresponding to the coordinate 

d

h(d )

 High H(h)

d

 Low H(h)

h(d )

Figure 7.  The functional H on function h. It measures the degree of concentration of the 
value of h.

log
d=D0
Σ
D1

Et(h)
h(d,t)

Et(h)
h(d,t)

h(d,t)
d=D0
Σ
D1



Local Feature Selection and Global Energy Optimization in Stereo 425

value t:

ht = argminh∈H Ht(hmaxt − h).

This selection rule prefers a function that has a distinguished dip, which means, in our 
situation, one or few disparity values that have an advantage over other values. This 
method of selection allows us to avoid irrelevant measures locally and ensures the most 
confident selection of the disparity on each selection line. 

6. Implementation and Results 

We implemented the architecture explained in the preceding sections. For the minimum-cut 
algorithm, we used the standard push-relabel method with global relabeling (Cherkassky 
and Goldberg, 1997). 
For the local energy functions, the following features are used: 
1. Intensity. This is a simple squared difference between the points, i.e., 

h
2
I (t,y,d) =

 . 
2. Wavelet edge. The derivative of Gaussian wavelet that detects an edge in the vertical 
direction at various scales: 

where

See (Mallat, 1999) Chapter 6 for the details of multi-scale edge detection. 
3. Multi-scale edges consistent across the scale. This is a measure of the presence of an edge 
across scales. 

hE(t,y,d) =
 .

In Fig. 8, a comparison of the results for a sample image pair ((a), (b); 135×172 pixel 8-bit 
gray-scale images) using these energy functions is shown. The results (disparity maps) are 
shown using the intensity square difference hI

2 (c); the wavelet edge features hE
s with scale s =

1 (d), s = 2 (e), and s = 4 (f); the multi-scale edge hE (g) (the square difference of the sum of 
the wavelet coefficients for s = 1, 2, 4; and the minimum-entropy selection from the five 
energies (h). The Intensity feature hI

2 (c) gives the poorest result in this example. Wavelet 
edges for s = 1, 2, 4 (d), (e), and (f) are better, yet with a black artifact on the upper right, also 
present with the multi-scale edge (g). The gray-scale image (i) shows which of the five 
energy functions is used in (h) at each point of the left image. A black point represents an 
occluded point, where no match was found, resulting in no corresponding t defined for the 
l-coordinate. Other gray values are in the order (c) to (g), i.e., darkest: intensity hI

2, lightest: 
multi-scale edge hE.

Ws IL(       , y) −      Ws IR(       , y)
2

t+d
2

t−d
sΣ sΣ

{IL(       , y) − IR(       , y)}2
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t+d
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(a) 

(d) 

(g) 

(b) 

(e) 

(h) 

(c)

(f) 

(i) 

Figure 8. (a), (b): A sample image pair “Apple.” Results (disparity maps) are shown using 
different local energy functions (c), (d), (e), (f), (g), and minimum-entropy selection from the 
five energies (h). The gray level in (i) shows which of five energy functions is used in (h) at 
each point of the left image. 
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3D Reconstruction

Original 

Disparity 

Figure 9. Stereo pair “Pentagon” (508×512 pixel 8-bit greyscale images,) disparity maps for 
both images, and a 3D reconstruction from the disparity 
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(a)

(b)

(c)

Figure 10. More results. Left and Middle columns show the left and right images. Right 
column shows the stereo disparity. 

Fig. 9. shows a stereo pair “Pentagon” (508×512 pixel 8-bit greyscale images,) disparity maps 
for the left and right images, and a 3D reconstruction from the disparity map. To compute 
this example, it took about ten minutes on a 1GHz Pentium III PC with 1GB of RAM. A few 
more results are shown in Fig. 10. 

7. Conclusion 

We have presented a new approach to compute the disparity map, first by selecting optimal 
feature locally, so that the chosen local energy function gives the most confident selection of 
the disparity from each set of mutually exclusive choices, then by modelling occlusions, 
discontinuities, and epipolar-line interactions as a MAP optimization problem, which is 
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equivalent to a first-order MRF optimization problem, and finally by exactly solving the 
problem in a polynomial time via a minimum-cut algorithm. In the model, geometric 
constraints require every disparity discontinuity along the epipolar line in one eye to always
correspond to an occluded region in the other eye, while at the same time encouraging 
smoothness across epipolar lines. We have also shown the results of experiments that show 
the validity of the approach. 
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1. Introduction 

Image segmentation remains an issue in most computer vision systems. In general, image 
segmentation is a key step towards high level tasks such as image understanding, and 
serves in a variety of applications including object recognition, scene analysis or 
image/video indexing. This task consists in grouping pixels sharing some common 
characteristics. But segmentation is an ill-posed problem: defining a criterion for grouping 
pixels clearly depends on the goal of the segmentation. Consequently, a unique general 
method cannot perform adequately for all applications. When designing a vision system, 
segmentation algorithms are often heuristically selected and narrowly tuned by an image 
processing expert with respect to the application needs. Generally, such a methodology 
leads to ad hoc algorithms working under fixed hypotheses or contexts. Three major issues 
arise from this approach. First, for a given task, the selection of an appropriate segmentation 
algorithm is not obvious. As shown in Figure 1, state-of-the-art segmentation algorithms 
have different behaviours. Second, the tuning of the selected algorithm is also an awkward 
task. Although default values are provided by authors of the algorithm, these parameters 
need to be tuned to get meaningful results. But complex interactions between the 
parameters make the behaviour of the algorithm fairly impossible to predict (see Figure 2). 
Third, when the context changes, so does the global appearance of images. This can 
drastically affect the segmentation results. This is particularly true for video applications 
where lighting conditions are continuously varying. It can be due to local changes (e.g. 
shadows) and global illumination changes (due to meteorological conditions), as illustrated 
in Figure 3. The third issue emphasizes the need of automatic adaptation capabilities. As in 
(Martin et al., 2006), we propose to use learning techniques for adaptive image 
segmentation. No new algorithms are proposed, but rather a methodology that allows to 
easily set up a segmentation system in a vision application. More precisely, we propose a 
learning approach for context adaptation, algorithm selection and parameter tuning 
according to the image content and the application need. 
In order to show the potential of our approach, we focus on two different segmentation 
tasks. The first one concerns figure-ground segmentation in a video surveillance application. 
The second segmentation task we focus on is static image adaptive segmentation. 
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original image CSC EGBIS 

CWAGM SRM Hysteresis Thresholing 

Figure 1. Illustration of the problem of segmentation algorithm selection. Five region-based 
segmentation algorithms (see Table 1 for details and references) are tuned with default 
parameters. For better visualization of very small regions, only region boundaries have been 
represented. Results show differences in terms of number of segmented regions and 
sensibility to small structures 

original image (Tlow =0.40, Τhigh =1.0) (Tlow =0.56, Τhigh =1.0) 

Figure 2. Illustration of the problem of segmentation algorithm parameter setting. The 
Hysteresis thresholding algorithm is tuned with two different sets of its two control 
parameters (Tlow , Τhigh). A good parameter set might be between these two sets 
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(a) (b)

(c) (d) 

(e) (f) 

Figure 3. Illustration of the problem of context variation for a video application. Six frames 
(from a to f) from an outdoor fixed video surveillance camera have been captured along a 
day. As lighting conditions change, the perception of the scene evolves. This is visible at a 
local level as in the zone of pedestrian entrance of the car park (see frames c and d) and at a 
global level (see frames b and f) 
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Illustration of the problem of  context variations for a static image application. 
Objects of interest are small, seen from different point of view and background is highly 
textured, with complex structures. This makes the segmentation task very difficult 



A Learning Approach for Adaptive Image Segmentation 435

In the first task, the goal is to detect moving objects (e.g. a person) in the field of view of a 
fixed video camera. Detection is usually carried by using background subtraction methods. 
A large number of techniques has been proposed in recent years mainly based on pixel 
intensity variation modeling techniques, e.g. using mixture of gaussians (Grimson & 
Stauffer, 1999), kernel density (Elgammal et al., 2000) or codebook model (Kim et al., 2005). 
Strong efforts have been done to cope with quick-illumination changes or long term 
changes, but coping with both problems altogether remains an open issue (see Figure 3 for 
example). In these situations, we believe that it should be more reliable to split the 
background modeling problem into more tractable sub-problems, each of them being 
associated with a specific context. For this segmentation task, the main contribution of our 
approach takes place at the context modeling level. By achieving dynamic background 
model selection based on context analysis, we allow to enlarge the scope of surveillance 
applications to high variable environments. 
In the second task, the goal is to segment complex images where both background and 
objects of interest are highly variables in terms of color, shape and texture. This is well-
illustrated in Figure 4. In other words, the segmentation setting of an image to an other one 
can be completely different. In this situation, the contribution of our approach arises from 
the need of adaptability of treatments (algorithm selection and parameter tuning) in order to 
segment the object of interest in an optimal manner for each image. Knowledge-based 
techniques have been widely used to control image processing (Thonnat et al., 1999; Clouard 
et al. 1999). One drawback is that a lot of knowledge has to be provided to achieve good 
parametrization. In our approach, we alleviate the task of knowledge acquisition for the 
segmentation algorithm parametrization by using an optimization procedure to 
automatically extract optimal parameters. In the following sections we describe a learning 
approach that achieves these objectives. 
The organization of the chapter is as follows: Section 2 first presents an overview of the 
proposed approach then a detailed description is given for two segmentation tasks: figure-
ground segmentation in video sequence and static image segmentation. In section 3, we 
present how we apply these techniques for a figure-ground segmentation task in a video 
surveillance application and a static image segmentation task for insect detection over rose 
leaves. Section 4 summarizes our conclusions and discusses the possibilities of further 
research in this area. 

2. Proposed Approach 

2.1 Overview 

Our approach is based on a preliminary supervised learning stage in which the knowledge 
of the segmentation task is acquired in two steps. 

Figure 5. Context analysis schema. The input is a training image set selected by the user. The 
output is a set of clustered training image IX
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The first step of our approach is dedicated to handle context variations. It aims at modeling 
context variations based on global image characteristics (see Figure 5). The role of the user is 
to establish a training image set composed of samples that point out context variations. 
Low-level information is extracted from the training image set to capture image changes. 
Then, an unsupervised clustering algorithm is used to cluster this training data feature set. 
This makes further tasks such as high variable object-class modelization possible by 
restricting object-class model parameter space. 
The second step consists in learning the mapping between the knowledge of the 
segmentation task and the image characteristics (see Figure 6). The user first defines a set of 
classes according to the segmentation goal (e.g. background, foreground, object of interest 
#1, object of interest #2, etc.). This set is used to annotate regions from initial training image 
segmentation (i.e. grid segmentation, manual segmentation). The goal is to train region 
classifiers. A region classifier allows to evaluate the membership of a region to a class. Then, 
a segmentation evaluation metric based on these trained classifiers is defined to assess the 
quality of segmentation results independently of the segmentation algorithm. This 
assessment will be further used both for parameter optimization and algorithm ranking. 

Figure 6. Region classifier training schema. For a cluster of training images Ix belonging to 
the same context x, the user is invited to annotate template regions from initial 
segmentations. The output is a set of trained region classifiers Cx, i.e. one classifier per class 

After this learning stage our approach proposes an automatic stage for the adaptive 
segmentation of new images. This stage is devoted to segmentation algorithm parameter 
control using previously learned knowledge. For an input image, after the context analysis, 
a global optimization algorithm efficiently explores the parameter space driven by the 
segmentation quality assessment. The goal is to minimize the assessment value. The main 
advantage of this procedure is that the search process is independent of both the 
segmentation algorithm and the application domain. Therefore, it can be systematically 
applied to automatically extract optimal segmentation algorithm parameters. This scheme is 
applied to a set of algorithms. By ranking their assessment values, we can select the one 
which performs the best segmentation for the considered image. 
The next sections describe in details each step of our approach for the two investigated 
segmentation tasks. Figure-ground segmentation task for video surveillance application 
requires real-time capabilities. In this case, the algorithm selection and parametrization steps 
are inappropriate because of the necessary computing-time. In static image segmentation 
task, the computing time is less important. 
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2.2 Figure-ground Segmentation in Video Sequences 

We consider a figure-ground segmentation problem in outdoor with a single fixed video 
camera. The context variations are mainly due to scene illumination changes such as the 
nature of the light source (natural and/or artificial), the diffusion effects or the projected 
shadows. The goal is to segment efficiently foreground regions (i.e. mobile objects) from 
background regions.

2.2.1 Training Dataset Building by Context Analysis 

Segmentation is sensitive to context changes. We study the variability of context in a 
quantitative manner by using an unsupervised clustering algorithm. The goal is to be able to 
identify context classes according to a predefined criterion. As context changes alter image 
both locally and globally, the criterion must be defined to take into account these 
characteristics. A straightforward approach is to use a global histogram based on pixel 
intensity distribution as in (Georis, 2006). However, such histograms lack spatial 
information, and images with different appearances can have similar histograms. To 
overcome this limitation, we use an histogram-based method that incorporates spatial 
information (Pass et al., 1997). This approach consists in building a coherent color histogram 
based on pixel membership to large similarly-colored regions. For instance, an image 
presenting red pixels forming a single coherent region will have a color coherence histogram 
with a peak at the level of red color. An image with the same quantity of red pixels but 
widely scattered, will not have this peak. This is particularly significant for outdoor scene 
with changing lighting conditions due to the sun rotation, as in Figure 3(a,b). 
An unsupervised clustering algorithm is trained using the coherence color feature vectors 
extracted from the training image set I. Let I be an image of the training dataset I, for each 
I∈I, the extracted global feature vector is noted gI. The unsupervised clustering is applied on 
gI. Its output is a set of clustered training images IX composed of n clusters Ix:

n

i
xX i

1=

= II  (1) 

The set of cluster identifiers (ID) is noted X=[x1,…,xn]. In our experiments, we have used a 
density-based spatial clustering algorithm called DBScan proposed by Ester et al. (Ester et 
al., 1996). This is well-adapted for clustering noisy data as histograms. Starting from one 
point, the algorithm searches for similar points in its neighborhood based on a density 
criteria to manage noisy data. 
The next section describes how each cluster of training images is used to train context-
specific background classifiers. 

2.2.2 Figure-ground Segmentation Knowledge Acquisition by Automatic Annotations 
of Buckets 

Because the point of view of the video camera is fixed, we can easily capture spatial 
information on image. This is done by using an image bucket partioning where a bucket is a 
small region at a specific image location. For instance, a bucket can be a square of pixels (see 
Figure 7) or reduced to only one pixel. The size and the shape of a bucket must be fixed and 
are equals for all samples of the training image set I.
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b1 b2 b3

b4 b5 b6

b7 b8 b9

Figure 7. Example of a bucket partioning using a grid segmentation. The image is 
segmented into nine regions of same size and shape. Each region is a bucket 

Let us define the set of bucket partioning B as: 

m

i

B
1=

= ib  (2) 

Where bi is a bucket among m. Since training image sets are composed of background 
images, the task of bucket annotations is automatic for a figure-ground segmentation 
problem. In our approach, this is done by assigning the same background  label l to each bi ∈
B. The role of the user is limited to the selection of video sequences where no mobile objects 
are present. Then, for each bucket, a feature vector vb is extracted and makes, with the label a 
pair sample noted (vb, lb). A pair sample represents the association between low-level 
information (vb) and high-level knowledge (lb). If the bucket is a pixel, vb can be the (R,G,B) 
value of the pixel. If the bucket is a small region, vb can be an histogram of the bucket pixel 
(R,G,B) values. Since all buckets have the same label, the set of all collected pair samples 
from Ix can be considered as the set of all feature vectors. This constitutes the training 
dataset Τx as: 

xxI
b

bx vT
Ι∈

∈

=
B

 (3) 

and then, 

Xx∈

= xTT  (4) 

Τ represents the knowledge of the segmentation task. At the end of this automatic 
annotation process, we obtain m*n training data sets (i.e. one training data set per bucket 
and per context cluster). The following task is to modelize this knowledge in order to train 
background classifiers. 

2.2.3 Segmentation Knowledge Modelization 

For each training image set Ix, we have to train a set of specific background classifiers noted 
Cx with one background classifier cx per bucket b∈B as seen in Figure 8. 
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Figure 8. Background classifier training schema for figure-ground segmentation. Since 
training image sets are composed of only background images, the annotation task is fully 
automatic

In our approach, we use the background codebook model proposed by Kim et al. (Kim et al., 
2005) as background classifier technique. This codebook algorithm adopts a 
quantization/clustering technique to construct a background model from long observation 
sequences. For each pixel, it builds a codebook consisting of one or more codewords. For 
each pixel the set of codewords is built based on a color distortion metric together with 
brightness bounds applied to the pixel values of the training images Ix. The codewords do 
not necessarly correspond to single Gaussian or other parametric distributions. 
According to this algorithm, a bucket is a pixel and the feature vector vb is composed of four 
features: the three (R,G,B) values of the considered pixel and its intensity. At the end of the 
training, we obtain one background classifier (i.e. a codebook) for each bucket (i.e. a pixel) 
and for each background cluster Ix.

2.2.3 Real-Time Adaptive Figure-ground Segmentation 

Fig 9. Adaptative segmentation schema for figure-ground segmentation 

As illustrated in Figure 9, the first step is the dynamic selection of background classifiers. 
We also use a temporal filtering step to reduce unstability of the clustering algorithm. 
Indeed, in cluttered scenes, foreground objects can strongly interact with the environnement  
(e.g. light reflections, projection of shadows) and then add a bias to the context analysis. So, 
it is important to smooth the analysis by ponderating the current result with respect to 
previous ones. Our temporal filtering criterion is defined as follows. For an image I, let us 
define the probability vector of the context analysis ouput for an image I as: 

[ ])|(,),|()|( 1 InII gxpgxpgXp =  (5) 

 The most probable cluster xI with associated probability pmax(xI) for the image I are then: 

)|(max)(max II gXpxp =

)|(maxarg II gXpx =  (6) 
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Let us define x the context cluster identifier, xI the cluster identifier for the incoming image I,
μx the square mean of cluster probability computed On a temporal window. α is a 
ponderating coefficent related to the width w of the temporal filtering window. To decide if 
xI is the adequate cluster for an incoming image I, we compare it with the square meanshift 
of cluster probability μx as in the algorithm described in Figure 13. In this algorithm, two 
cases are investigated. If xI is the same as the previous one, μx is updated based on the 
context maximum probability pmax(xI) and α. Else if the current xI is different from the 
previous one, the current pmax(xI) is tested against μx. The square value of pmax(xI) is used to 
raise the sensibility of temporal filtering to large variations of pmax(xI).
When the cluster identifier x is found, the corresponding background classifiers Cx are 
selected for the figure-ground segmentation of I as seen in Figure 9. 

Figure 9. Context analysis in real-time segmentation. From an input image, a global feature 
vector gI is first extracted. Then, context analysis computes the vector p(X |gI). Context 
temporal filtering uses this vector to compute the most probable cluster identifier xI for the 
current image depending on previous probabilities 

The figure-ground segmentation consists in a vote for each pixel. This vote is based on the 
results of the background classifiers for each pixel. If a pixel value satisfies both color and 
brightness distance conditions, it is classified as background (l = bg). Otherwise, it is 
classified as foreground (l = fg). 
The major problem of this segmentation method is that no spatial coherency is taken into 
account. To overcome this limitation, we compute in parallel a region-based image 
segmentation. Our objective is to refine the segmentation obtained with background 
classifiers (see Figure 12) . 

Fig 12. Figure-ground segmentation with region spatial refinement 

For each region r of the region-based segmentation we compute its label l by testing the 
percentage of pixels of this region labelled as foreground by the background classifiers. The 
refinement criterion is defined as follows: 

bglfgll
r r
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where θ is a threshold and fg
pixl  is a pixel classified as being a foreground pixel by its 

corresponding background classifier. 
So, if the foreground pixels inside the region r represent more or equal than θ percent of the 
region area |r|, the region r is considered as a foreground region. In our experiments, we 
have fixed the threshold θ  to 90 percent. 
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Figure 13. Description of the context temporal filtering algorithm. In our experiment, we 
have fixed w to 40 to consider the last five seconds of the image sequence in the calculation 
of μx (i.e. 40 frames at eight frames per second correspond to five seconds) 

Section 3.1 presents experiments of this proposed approach. 

2.3 Static Image Adaptive Segmentation 

We consider the segmentation task for a static image segmentation. The goal is to segment 
objects of interest from the background. The objects of interest are small, variable within the 
background and background is highly textured, with complex structures. 

2.3.1 Training Image Set Building by Context Analysis 

This step is conducted in the same way as in section 2.2.1. For this segmentation task, the 
user must provide training images containing both objects of interest and background.
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2.3.2 Static Image Segmentation Knowledge Acquisition by Visual Annotations of 
Regions 

In this section, we focus on the knowledge acquisition for static image segmentation. We use 
the example-based modeling approach as an implicit representation of the knowledge. This 
approach has been applied successfully in many applications such as detection and 
segmentation of objects from specific classes (e.g. Schnitman et al., 2006; Borenstein & 
Ullman, 2004). Starting from representative patch-based examples of objects (e.g. 
fragments), modeling techniques (e.g. mixture of gaussians, neural networks, naive bayes 
classifier) are implemented to obtain codebooks or class-specific detectors for the 
segmentation of images. Our strategy follows this implicit knowledge representation and 
associates it with machine learning techniques to train region classifiers. In our case, region 
annotations represents the high-level information. This approach assumes that the user is 
able to gather a representative set of manually segmented training images, i.e. a set that 
illustrates the variability of object characteristics which may be found. The result of a 
manual segmentation for a training image I∈I image is noted RI where R is a set of regions. 
First, let the user define a domain class dictionary composed of k classes as L = {l1,…,lk}. This 
dictionary must be designed according to the problem objectives. Once L is defined, the user 
is invited, in a supervised stage, to label the regions of the segmented training image with 
respect to V. From a practical point of view, an annotation is done by clicking into a region r
and by selecting the desired class label l. At the end of the annotation task, we obtain a list of 
labelled regions which belong to classes defined by the user. For each region, a feature 
vector vr is also extracted and it makes, with the label a pair sample noted (vr , lr). The set of 
all collected pair samples from I constitutes the training dataset. This training dataset 
represents the knowledge of the segmentation task and is composed, at this time, of raw 
information.
In the following section, we address the problem of knowledge modeling by statistical 
analysis.

2.3.3 Segmentation Knowledge Modelization 

The first step towards learning statistical models from an image partition is extracting a 
feature vector from each region. But which low-level features are the most representative for 
a specific partition ? This fundamental question, refering to the feature selection problem, is 
a key issue of most of the segmentation approaches. As said by Draper in (Draper, 2003), we 
need to avoid relying on heuristically selected domain features. A popular approach is to 
combine generic features, such as color, texture and geometric features. The final feature 
vector representing a region is a concatenation of the feature vectors extracted from each 
cue. 

Figure 14. Region Classifier training schema for static image segmentation 
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Then, applying a feature reduction algorithm, discriminante information is extracted by 
using a linear component analysis method. In our approach, a generalization of linear 
principal component analysis, kernel PCA, is exploited to simplify the low-level feature 
representation of the training dataset Τ . Kernel PCA was introduced by Scholkopf (Mika et 
al., 1999) and has proven to be a powerful method to extract nonlinear structures from a 
data set (Dambreville et al., 2006). Comparing to linear PCA, which may allow linear 
combinations of features that are unfaithful to the true representation of object classes, 
kernel PCA combines the precision of kernel methods with the reduction of dimension in 
the training set. We denote vr’ as the vector of reduced features for the region r.
After reducing feature vector for each region of each training image, the next step is to 
modelize the knowledge in order to produce region classifiers (one classifier per class) as 
seen in Figure 14. For a feature vector rv and a class c,

)|()( rrl vlprc ′=  (9) 

with cl(r)∈[0,1], is the probability estimate associated with the hypothesis: feature vector  νr’
extracted from region r is a representative sample of l. The set of these trained region 
classifiers is noted C = { c1,…,ck }.
A variety of techniques have been successfully employed to tackle the problem of 
knowledge modeling. Here we have tested Support Vector Machine (SVM) (Burges, 1998) as 
a template-based approach. SVM are known to be an efficient discriminative strategy for 
large-scale classification problems such as in image categorization (Chen & Wang, 2004) or 
object categorization (Huan & LeCun, 2006). SVM training consists of finding an hyper-
surface in the space of possible inputs (i.e. feature vectors labeled by +1 or -1). This hyper-
surface will attempt to split the positive examples from the negative examples. This split 
will be chosen to have the largest distance from the hyper-surface to the nearest of the 
positive and negative examples. We adopt a one-vs-rest multiclass scheme with probability 
information (Wu et al., 2004) to train one region evaluator c per class l.
The goal of training region classifiers is not to directly treat the problem of the segmentation 
as a clustering problem but as an optimization one. Region classifiers express the problem 
knowledge. Used as performance assessment tools, they define a segmentation evaluation 
metric. Such functional can then be used in an optimization procedure to extract optimal 
algorithm parameters. Consequently, we can say that the segmentation optimization is 
guided by the segmentation task. Next section describes this approach. 

2.3.4 Segmentation Knowledge Extraction via Parameter Optimization 

While a lot of techniques (Sezgin et al., 2004) have been proposed for adaptive selection of 
key parameters (e.g. thresholds), these techniques do not accomplish any learning from 
experience nor adaptation independently of detailed knowledge pertinent to segmentation 
algorithm. The proposed optimization procedure overcomes such limitations by 
decomposing the problem into three fundamental and independent components: a 
segmentation algorithm with its free-parameters to tune, a segmentation evaluation metric 
and a global optimization algorithm (see Figure 15). To our knowledge, this scheme has 
already been applied for adaptive segmentation problems by Banu et al. (Bahnu et al., 1995) 
and by Abdul-Karim et al. (Abdul-Karim et al., 2005). Bahnu et al. used a genetic algorithm 
to minimize a multiobjective evaluation metric based on a weighted mix of global, local and 
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symbolic information. Experiments are not very convincing since it has only been tested for 
one segmentation algorithm and one application (outdoor tv imagery). Abdul-Karim et al. 
used a recursive random search algorithm to optimize the parameter setting of a vessel-
neurite segmentation algorithm. Their system uses the minimum description length 
principle to trade-off a probabilistic measure of image-content coverage against its 
conciseness. This trade-off is controlled by an external parameter.  The principal limitation 
of the method is that the segmentation evaluation metric has been defined for the specific 
task of vessel-neurite segmentation and makes the system unsuitable for other applications. 
Our approach differs from these ones in the optimization method and above all, in the 
definition of the evaluation metric. 
Let I be an image of the training dataset I, Α be a segmentation algorithm and pΑ a vector of 
parameters for the algorithm Α. The result A

IR  of the segmentation of Ι with algorithm Α is 
defined as:

),( AA
I IAR p=  (10) 

where R is a set of regions. 

Fig 15. Algorithm parameter optimization schema. Given an input image and trained region 
classifiers, the ouput of the module is the set of optimal parameter for the segmentation 
algorithm associated with the final segmentation quality assessment value 

Several considerations motivate the selection of a direct search method (the simplex  
algorithm in our implementation) as a preferred strategy compared to other available 
alternatives. First, exhaustive search is time prohibitive because of the size of the search 
space. Second, in our approach, the performance metric ρ has no explicit mathematical form 
and is non-differentiable with respect to A

Ip , mainly because the mapping itself is not 
differentiable. Thus, standard powerful optimization techniques like Newton-based 
methods cannot be applied effectively. Simplex  algorithm reachs these two conditions: it is 
able to work on non-smooth functions and the number of segmentation runs to obtain the 
optimal parameter settings is low (from experiments, under 50 runs in mean). 
Let us define the performance evaluation of the segmentation as: 
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)( DRE A
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A
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 where A
IE is a scalar, A

IR  the result of the segmentation of Ι with algorithm Α and C the set 
trained region classifiers. The purpose of the optimization procedure is to determine a set of 
parameter values A

Ip̂  which minimizes A
IE :
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In order to be goal-oriented, ρ must take into account the knowledge of the problem. In our 
approach, this knowledge is represented by the set of previously trained region classifiers C.
Each region classifiers returns the class membership probability c(r) depending on the 
feature vector νr extracted from r. The analysis of the classifier output values allows to judge 
the quality of the segmentation of each segmented region. The performance metric ρ is then 
considered as a discrepency measure based of the responses of region classifiers as: 

( ) ( )−⋅=
∈

ijjRr
i

A
1 rcr

I
C,R
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max1.0
1ρ  (13) 

where |I| and |ri| are respectively the image area and the area of the ith region. ρ is borned 
between zero (i.e. optimal segmentation according to C) and one (i.e. all classifier responses 
to zero).Our metric takes also into account the region sizes by lowering the weight of small 
regions.

2.2.3 Adaptive Static Image Segmentation 

From a new image and a set of algorithms, the clustering algorithm determines to which 
context cluster the image belongs to. Then, corresponding region classifiers are used for 
algorithm parameter optimizations. A set of segmentation assessment values is obtained 
(one per algorithm). This is used to rank algorithms. Finally, the algorithm with the best 
assessment value is selected and parametrized with the corresponding optimal parameter 
set for the segmentation of the image (see Figure 16). 

Figure 16. Adaptive static image segmentation schema 

Section 3.2 presents experiments of this proposed approach. 
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3. Experiments 

In this section, we present two experiments. The first experiment is a figure-ground 
segmentation task for video surveillance.  It shows the interest of our approach for context 
adaptation issues. The second experiment is a segmentation task for object detection on 
static images. The application is in the scope of biological organism detection in greenhouse 
crops. It shows the interest of our approach for the three issues, i.e. context adaptation, 
algorithm selection and parameter tuning. 

3.1 Figure-ground Segmentation in Video Sequences 

The experimental conditions are the followings: the video data are taken during a period of 
24 hours at eight frames per second, the field of view is fixed and the video camera 
parameters are set in automatic mode. In this application our goal is to be able to select the 
best appropriate background model according to the current context analysis. The size of the 
images is 352x288 pixels. Our approach is implemented in C++ and a 2,33 GHz Dual Core 
Xeon system with 4 Go of RAM is used for the experiments. 

Figure 17. 3-D histogram of the image sequence used during the experiment (see Figure 3 
for samples). Each X-Z slice is an histogram which represents the percentage of the number 
of pixels (Z axis) belonging to a given color coherent feature (X axis). The coherent color 
feature scale has been divided into 3 intervals for the three HSV channels. Histograms are 
ordered along the Y axis which represents the time in the course of a day. Several clusters of 
histograms can be easily visually disciminated as notified for cluster number 1, 14 and 2. 
Others clusters not represented here are intermediate ones and mainly correspond to 
transitions states between the three main clusters 

In the learning stage, we have manually defined a training image set I composed of 5962 
background frames (i.e. without foreground objects) along the sequence. This corresponds 
to pick one frame every 15 seconds in mean. First, the context clustering algorithm is trained 
using coherence color feature vectors gI as inputs. Figure 17 gives a quick overview of the 
feature distribution along the sequence. Sixteen clusters Ix are found (see Figure 18 for 
context class distribution). For each cluster, the corresponding frames are put together and 
automatically annotated by assigning the same (background) label to each pixel. The 
resulting training data set T is used to train background classifiers Cx (i.e. codebooks). 

Cluster 1

Cluster 14

Cluster 2 
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In the automatic stage the figure-ground segmentation is performed in real-time. For each 
new frame I, context analysis with temporal filtering is used to select a background classifier 
Cx. Then, background segmentation is computed using the selected Cx. We compute in 
parallel a static region-based segmentation using the EGBIS algorithm with parameter σ set 
to 0.2 and parameter k set to 100. We use this segmentation to refine the one resulting from 
the background segmentation. Exemple of segmentation refinement is presented in Figure 
19. The testing set is composed of 937 frames different from the training set I. We present in 
Figure 20 four representative results of figure-ground segmentation illustrating different 
context situations. To show the potential of our approach, we have compared the results 
obtained with our approach with the results obtained without context adaptation, i.e. using 
background classifiers trained on the whole sequence. We can see that the detection of 
moving objects is improved with our approach. 

Figure 18. Pie chart of the context class distribution for the image sequence used for the 
experiments. Three major clusters can be identified (number 1, 2 and 14). The order of class 
representation does not necessary correspond to consecutive time instants. Cluster 1 
corresponds to noon (sunny context), cluster 2 correspond to the morning (lower contrast) 
and cluster 14 to the night 

Figure 19. Illustration of the segmentation refinement. An input image (a) is segmented 
using a region-based segmentation algorithm. The result is presented in (b). In parallel, a 
figure-ground segmentation (c) is computed using the background classifiers. The final 
result (d) is a combination of the two segmentations with respect to the criteria defined in 
Equation 7

(a) (d)

(b)

(c)
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Concerning the computational-time, without any optimization of the implementation, the 
background segmentation takes less than 0,02 second and the region-based segmentation 
takes 0,4 second. The total processing time allows to segment two frames per second in 
mean. This validates our approach for real-time applications. 

 (a) Context 2 

(b) Context 6 

(c) Context 8 

(d) Context 3 

Figure 20. Segmentation results illustrating different context situations. Boundaries of the 
detected foreground regions (mobile objects) are shown in red. Images of the left column are 
those obtained without context adaptation. Images of the right column are segmentation 
results with context adaptation. The third column corresponds to the identified context 
cluster. We can see that the persons are better detected using our method (rows a, c and d). 
Moreover, false detection are reduced (rows b, c and d)
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3.2 Static Image Adaptive Segmentation 

This experiment is related to a major challenge in agronomy: the early pest detection in rose 
crops (Boissard et al., 2003). The experimental conditions are the followings: images are 
obtained from scanned rose leaves. The objects of interest are white flies (Trialeurode 
vaporariorum) at mature stage. The white fly wings are half-transparent and the insect has 
many appendices as antennas and paws. They are shown from different points of view. The 
image background (i.e. the rose leaf) is highly structured and textured and also varies in 
color in function of the specy and the age of the  plant. Concerning the set of segmentation 
algorithms used for this experiment, we have selected from the literature (Freixenet et al, 
2002), four algorithms which illustrate different state-of-the-art approaches of image 
segmentation: Efficient Graph-Based Image Segmentation (Felzenszwalb & Huttenlocher, 
2004), Color Structure Code (Priese et al., 2002), Statistical Region Merging (Nock & Nielsen, 
2004) and Color Watershed Adjency Graph Merge (Alvarado, 2001). They are summarized 
in Table 1, along with their free parameters and default values used in our experiment.  

Algorithm Free Parameter Range Default Value 

EGBIS 
σ: smooth control on input image 
k: color space threshold 

0.0-1.0
0.0-2000.0

0.50
500.0

CSC t: region merging threshold 5.0-255.0 20.0 
SRM Q: coarse-to-fine scale control 1.0-255.0 32.0 

CWAGM
M: Haris region merge threshold 
k: Haris minimal region number 
t: Min prob for wathershed threshold 

0.0-2000.0
1.0-100.0
0.0-1.0

100.0
10.0
0.45

Table 1. Components of the segmentation algorithm bank, their names, parameters to tune 
with range and default values 

In the learning stage, we have defined a training image set I composed of 100 sample images 
of white flies over rose leaves. The size of an image is 350x350 pixels. First, the context 
clustering algorithm is trained using coherence color feature vectors gI as inputs. We have 
obtained four context clusters. Each training image cluster is manually segmented into 
regions by marking white fly boundaries out. This represent a total of 557 regions. Then, 
each region is annotated with a white fly or a leaf label and a feature vector vr is extracted. We 
compute the (H,S,V) histogram of the region pixel values quantified into 48 bins (i.e. 16 bins 
per channel). Each cluster of feature vectors is reduced by using kernel PCA. The size of a 
reduced feature vector vr’ varies from 22 features to 28 depending on the context cluster. 
Then, the region classifiers Cx are trained using the linearly scaled feature vectors vr’. We use 
SVM with radial basis function (RBF) as region classifiers. To fit the C and γ parameters of 
the RBF kernel to the problem data, we perform a five fold cross-validation on training data 
to prevent overfitting problems. 
In the automatic stage, a new image I is initially segmented with an algorithm A tuned with 
default parameters pA (i.e. with values given by the author of the algorithm). Then, 
parameter optimization is achieved and returns an optimal parameter set A

Ip̂  and a 
segmentation quality assessment quality value A

IE  as output. Once all segmentation 
algorithm parameter optimizations are processed, we can rank the segmentation algorithms 
in accordance to their A

IE . This algorithm selection technique is illustrated in Figure 21. We 
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can see that for the four presented algorithms, the assessment values are very closed. This is 
in accordance with the visual observation of the results. The small differences between the 
algorithms can be explained by the detection (or not) of small appendices of white flies (e.g. 
antenna, paw). We also see that the SRM algorithm gets the best result (i.e. the smallest 
assessment value) without performing the finest segmentation (appendices are not 
detected). This is mainly due to the fact that white fly classifiers have been trained with 
manually segmented regions for which, most of the time, small details like the appendices 
are missed. Consequently, segmentation is better evaluated when the appendices are not 
parts of white fly regions. 

original test image EGBIS CSC

SRM CWAGM

Algorithm segmentation 
quality assessment values: 

(0=perfect, 1=null) 

EGBIS 0,0291819 
CSC 0,0291929 
SRM 0,0291740 

CWAGM 0,0292666 

Figure 21. Segmentation results from test samples illustrating the algorithm selection issue. 
After parameter optimization, final algorithm segmentation quality assessment values can 
be compared to rank the algorithms 

Figure 22 is shown to illustrate the parameter tuning issue. We clearly see that optimization 
of parameters is useful and tractable for different segmentation algorithms. However, we 
can see for the first image of Figure 22 that two white flies are miss-detected. This 
discrepancy has two explanations: first, it reveals that classifiers have not been trained 
enough and second, that our dictionary does not discriminate enough differences between 
classes. The first issue can be achieved by training classifiers on more training images and 
the second issue can be achieved by using more specific classes as one classe for each white 
fly body parts (e.g. head, wings and abdomen). Obviously, this also demands more efforts to 
the user. 
Regarding the conputation-time, we have used the same hardware system than in section 
3.2. Both context analysis and algorithm ranking are inconsiderable (less than 0,01 second). 
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An optimization closed-loop takes between 5 and 35 seconds for an image. The duration 
depends on the algorithm segmentation computation-time (between 0.08 second and 0.8 
second), the number of iterations (between 8 and 50) and the segmentation evaluation time 
depending on the number of regions to process (between 1 and 300). So the total processing 
time of the automatic adaptive segmentation is between 5 and 35 seconds, using the same 
system as in section 3.1. 

original test image SRM with default parameters SRM with optimal parameters 

original test image EGBIS with default 
parameters

EGBIS with optimal 
parameters

Figure 22. Segmentation results from test samples illustrating the algorithm parameter 
tuning issue. For two different images , two algorithms are first run with their default 
parameters (central column). Results after the parameter optimization step are presented in 
the last column. We can see that the detection of the object of interest is better with optimal 
parameters than with the default parameters 

4. Conclusion and Discussion 

In this chapter, we have proposed a learning approach for three major issues of image 
segmentation: context adaptation, algorithm selection and parameter tuning according to 
the image content and the application need. This supervised learning approach relies on 
hand-labelled samples. The learning process is guided by the goal of the segmentation and 
therefore makes the approach reliable for a broad range of applications. The user effort is 
restrained compared to other supervised methods since it does not require image processing 
skills: the user has just to click into regions to assign labels; he/she never interacts with 
algorithm parameters. For the figure-ground segmentation task in video application, this 
annotation task is even automatic. When all images of the training set are labelled, a context 
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analysis using an unsupervised clustering algorithm is performed to divide the problem 
into context clusters. This allows the segmentation to be more tractable when context is 
highly variable. Then, for each context cluster, region classifiers are trained with 
discriminative information composed of a set of image features. These classifiers are then 
used to set up a performance evaluation metric reflecting the segmentation goal. The 
approach is independent of the segmentation algorithm. Then, a closed-loop optimization 
procedure is used to find algorithm parameters which yield optimal results. 
The contribution of our approach is twofold: for the image segmentation community, it can 
be seen as an objective and goal-oriented performance evaluation method for algorithm 
ranking and parameter tuning. For computer vision applications with strong context 
variations (e.g. multimedia applications, video surveillance), it offers extended adaptability 
capabilities to existing image-sequence segmentation techniques. 
The ultimate goal of this approach is to propose the best available segmentation for a given 
task. So, the reliability of the approach entirely depends on the inner performance of the 
segmentation algorithms used. One other limitation of the approach is that the adaptability 
ability is depending on the sampling of the training data. More the training dataset is 
representative of different contexts, more the system will be precise to select and tune the 
algorithms. 
Future works consist in improving these issues. For instance, incremental learning could be 
used to learn on-the-fly new situations and then enrich the knowledge of the problem. In 
this chapter, we have proposed a method based on class models of visual objects. This 
method exploits features in a discriminative manner. For very difficult cases where intra-
class information (i.e. object appearance) is very heterogeneous and/or inter-class 
information is poorly discriminative, selection of representative features is tricky and leads 
to poor performances. In this case, approaches based on shared visual features across the 
classes as boosted decision stumps should be more appropriated and effective. Finally, by 
addressing the problem of adaptive image segmentation, we have also addressed 
underlying problems such as feature extraction and selection, segmentation evaluation and 
mapping between low-level and high-level knowledge. Each of these well-known 
challenging problems are not easily tractable and still demands to be intensively considered. 
We have designed our approach to be modular and upgradeable so as to take advantage of 
new progresses in these topics. 
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1. Introduction     

The omnidirectional vision system has been given increasing attentions in recent years in 
many engineering research areas such as computer vision and mobile robot since it has wide 
field of view (FOV). A general method for 360o omnidirectional image acquisition is the 
catadioptric approach using a coaxially aligned convex mirror and a conventional camera. 
The catadioptric approach with the convex mirror is simple and fast compared to the mosaic 
approach using multiple cameras or a rotating camera. There are several types of 
commercially available convex mirrors such as conical, spherical, parabolic, or hyperbolic 
mirrors (Baker & Nayar, 1999)(Nayar, 1977).. 
In order to extract 3D information from the camera vision, the stereo image with disparity 
should be taken. One obvious method for the stereo image acquisition is using two cameras 
with different view angles. However, two-camera stereo introduces difficulties in the image 
processing caused by the non-identical intrinsic camera parameters such as focal length, 
gain, and spectral responses etc (Gluckman & Nayar, 2001). Accordingly, there have been 
much work on single-camera stereo system to overcome the problems of the two-camera 
stereo. One straightforward method for the single camera stereo is sequential image 
acquisition with respect to camera movement. A typical application of the method is in the 
mobile robot area, where the camera system on a mobile robot takes a sequence of images, 
and extracts 3D information from the set of images. Due to the uncertainties in the 
sequential camera position, however, it is difficult to get the accurate 3D information in that 
method. Moreover, the information is basically not real-time due to the time-lag of the 
sequential images. In order to overcome the problems according to the sequential camera 
motion, additional optical devices are introduced to the single camera stereo system such as 
two planar mirrors which have different view angles (Gluckman & Nayar, 2001) or a biprim 
which gives two virtual images for an object (Lee & Kweon, 2000). 
On the other hand, the stereo methods have also been developed in the omnidirectional 
vision area. An exemplar omnidirectional stereo vision is the direct application of two-
camera stereo with two convex mirrors in (Gluckman et al., 1998)(Pajdlar et al., 2002). Since 

                                                                
1 This work was published in part in Proc. of ICIAR 2006. 
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the omnidirectional stereo vision system obtains the distance information for all directions 
in one shot, it is especially useful for a mobile robot application. K. Koyasu et al. developed 
an omnidirectional stereo vision system with two pairs of cameras and convex mirrors for 
the map-making and the autonomous navigation of a mobile robot (Koyasu et al., 2002). For 
high resolution, the multiview panoramic cameras have been developed using a mirror 
pyramid (Nalwa, 1996). The single camera approach is also an important issue in the 
omnidirectional stereo vision area. A. Basu and D. Southwell proposed a double lobed 
mirror for the single camera stereo vision system (Southwell et al., 1996) and developed the 
required image processing algorithm (Fiala & Basu, 2005). E. Cabral et al. also designed the 
similar double lobed hyperbolic mirror for the single camera omnidirectional stereo vision 
(Cabral et al., 2004). Recently, another single camera approach using two pieces of 
hyperbolic mirrors is reported to improve the accuracy in 3D distance computation (Jang et 
al., 2005). The main advantages of the single camera omnidirectional stereo vision system 
are the reduced system complexity and the simple image processing due to the consistent 
intrinsic camera parameters. 
A main aim of this paper is to present a new approach for the single camera omnidirectional 
stereo vision system. Eliminating the costly two pieces of mirrors or the double lobed 
mirrors, the proposed method uses a simple combination of the off-the-shelf convex mirror 
and concave lens. Thus, the resulting omnidirectional stereo vision system becomes compact 
and cost-effective. This paper is organized as follows: In Sec. 2, the principles of the 
proposed omnidirectional stereo system are briefly described. In Sec. 3, the closed-form 
depth estimate is addressed based on the simple optics for a convex mirror and a concave 
lens. A prototype of the proposed system and some preliminary experiments are described 
in Sec. 4. Sec. 5 presents some concluding remarks. 

2. The Proposed Omnidirectional Stereo System 

The optical part of the proposed omnidirectional stereo system consists of a convex mirror 
and a concave lens. A hyperbolic omnidirectional mirror is used as the convex mirror in this 
paper. However, a parabolic mirror could also be used instead. 
Fig. 1 illustrates the principles of the proposed system, where ( , )r zO  denotes an object 
point. Light ray I from the object is reflected on the hyperbolic mirror, and the reflected ray 
passes through the pinhole. There is an image point on the sensor plane corresponding to 
the ray I as shown in Fig. 1 (a). The real object emits the light rays for all directions, not only 
the ray I of course. However, the other light rays having different directions from the ray I, 
e.g., the ray II in Fig. 1 (a) cannot reach the pinhole after the reflection, thereby, cannot have 
any image on the sensor plane. 
On the contrary, the reflected ray from the ray II in Fig. 1 (b) can reach the pinhole owing to 
the refraction through the concave lens. The amount of refraction depends on the refraction 
index of the lens material, curvature, position, and thickness of the concave lens. It should 
be noted that the concave lens does not affect on the ray I. Since both the rays I and II come 
from the same object point, the image points, 1ρ  and 2ρ  on the sensor plane constitute the 
stereo pair with disparity. Therefore, it is possible to compute 3D distance to the object point 
based on the simple optics composed of the reflection on the hyperbolic mirror and the 
refraction through the concave lens. 
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(a)     (b) 

Figure 1. The proposed single camera omnidirectional stereo vision system: (a) The 
omnidirectional imaging, (b) The omnidirectional stereo imaging with concave lens 

3. Depth Computation 

3.1 Refraction Through a Concave Lens 

As passing through a concave lens, a light ray experiences the refraction as illustrated in Fig. 
2, which is given by Snell’s law (Jenkins & White, 1976). First order optics with Gaussian 
approximation gives the relationships between the incident ray and the refracted ray as 
follows: 

2
2 2

2

1

( 1)

p c n
p p d

p n c n
⋅ −′′ = − + ⋅

− +
(1)
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2
2 2

( 1)c n p
c

θ θ
+ − ⋅′′ = ⋅ (2)

where
2

θ ′′  and 
2

p′′  denote the incidence angle and the cross point with the vertical axis, and 

2
θ  and 

2
p  represent the angle of the refracted ray and the lens position as shown in Fig. 2. 

Derivation in detail is described in Appendix. It is assumed that the coordinate system is 
assigned at the pinhole position in this sequel. In (1) and (2), c , d , and n  imply the 
curvature, thickness, and the refraction index of the lens material respectively. Here, a 
plano-concave lens with flat surface on one side is used without loss of generality. It is also 
possible to get the similar expressions for a biconcave lens. 

         
 Figure 2. Refraction through a concave lens    Figure 3. Reflection on a hyperbolic mirror 

3.2 Reflection on the Hyperbolic Mirror Surface 

The analysis in this paper is described on r z−  plane rather than in the whole 3D space. It is 
easy to extend this analysis to 3D space by rotating about the vertical z  axis. Given the 
reflected ray with angle θ  and cross point p  as shown in Fig. 3, it is possible to obtain the 
equation for the incident ray from an object, ( , )r zO , based on the simple reflection law. At 
first, the hyperbolic curve, ( )M r , with its focal point at h  can be represented as (3) on r z−
plane.

           

2 2

2 2

2 2

( )
1

( )

z h f r

a b

a
z M r h f r b

b

− +
− =

≡ = = − + +

(3)

where a  and b denote the parameters of the hyperbolic function, and f  represents its focal 
point given by 
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2 2f a b= +
(4)

The reflected ray is then described by the given angle θ  and the cross point p  as: 

cotz r pθ= − ⋅ + (5)

The intersection point, C  between the hyperbolic function (3) and the reflected ray (5) is 
denoted as ( , )c cr zC . Then, the incident ray from an object, ( , )r zO , can be parameterized 
as:

cot oz r zφ= ⋅ + (6)

where φ  and oz  represent vertical angle and cross point with z  axis as shown in Fig. 3. By 
using the simple law of reflection on a specular surface and the geometry given in Fig. 3, it is 
possible to get the first parameter, φ  for (6) as follows:  

1 ( )
2 tan

dM z
dr

φ θ −= + ⋅
C

(7)

2

2

( ) c

c

rdM z a
dr z h fb

= ⋅
− +C

(8)

Since the incident ray (6) should pass through the intersection, ( , ) ,c cr zC the parameter, 

,Oz can be represented as: 

coto c cz z rφ= − ⋅ (9)

In other words, given angle θ  and cross point p  of the reflected ray, the corresponding 
incident ray toward 

Oz  is described in (6), where the parameters, φ  and 
Oz  can be obtained 

by (7) through (9). 
It is assumed in this paper that the first focal point of the hyperbolic mirror is located at 

2h f= , so that the pinhole position of a camera coincides with the second focal point of the 
hyperbolic mirror. According to the property of the hyperbolic function, all incident rays 
toward the first focal point, i.e., 2oz f= , reach the pinhole at the origin after the reflection. 
Thus, the reflected ray always has 0p =  without regard to θ .

3.3 Depth Computation 

As shown in Fig. 4, the position of the object point, ( , )r zO  is the solution of the 
simultaneous equations for the rays I  and II . Thus, it is necessary to get the expressions 
for the rays based on the measurement data in the system. 
Given measured stereo pairs, 1ρ  and 2ρ  on the image plane in Fig. 4, the vertical angles of 
two rays toward the pinhole are described as follows: 
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1 1
1 tan

ρ
θ

λ
−= , 1 2

2 tan
ρ

θ
λ

−= (10)

where λ  denotes the distance from the pinhole position to the image plane. 

Figure 4. Depth computation given stereo pair 

The equation for ray I  in Fig. 4 can be obtained as follows. It should be recalled that only 
the incident ray toward the first focal point can reach the pinhole after the reflection on the 
hyperbolic mirror. Thus the other parameter, 

Oz  for the ray (6) becomes 2oz f= . The 
parameter, φ  in (6) is obtained by inserting the measurement (10-1) into (7) together with 
(8). The equation of ray I  is written as (11). 

1cot 2z r fφ= ⋅ + (11)

In order to get the equation for the ray II , the refraction through the concave lens should be 
taken into consideration. As described in Sec. 3.1, it is possible to get 

2
θ ′′  and 

2
p′′  by (1) and 

(2) with given 2θ  and 2p , where 
2

p  denotes the known position of the concave lens. Again, 

by inserting 
2

θ ′′  and 
2

p′′  into (7) through (9), it is possible to get the parameters, 2φ  and 2oz

for the ray equation (12). 

2 2cot oz r zφ= ⋅ + (12)

Detailed expressions for the parameters are omitted here for brevity. The solution of the 
simultaneous equations consisting of (11) and (12) gives the object point, ( , )r zO  as follows: 

1
1

22

2cot 1

cot 1 o

fr
zz

ϕ
ϕ

− −−
= ⋅

−−

(13)
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4. Experimental Results 

A prototype of the system is implemented as shown in Fig. 5, and some preliminary 
experiments are carried out with the prototype. The parameters of the experimental system 
are tabulated in Table 1. 
Fig. 6 (a) and Fig. 6 (b) show the omnidirectional images acquired by the proposed system 
without and with the concave lens respectively. As shown in Fig. 4, the side of the concave 
lens blocks the light rays incident from sufficiently horizontal directions, which causes the 
opaque ring at the boundary between the outer and the inner stereo image as shown in Fig. 
6. By making the lens side inclined rather than vertical, it is possible to minimize the blocked 
angle, thereby the thickness of the opaque ring in the image. However, the vertical side of 
the lens is preferable for the case of a parabolic mirror and the orthographic imaging. 

Parameter a b f Radius Height 

Value 28.095 23.4125 36.57 30.0 20 

(a) Mirror (mm) 

Parameter n d c 2
p Radius 

Value 1.7 2 mm 58.8 mm 52 mm 15 mm 

(b) Concave lens 

Parameter Focal length Size, Resolution 

Value 2.7 ~ 8 mm 1/3”, 1024x768 

(c) Camera

Table 1. Parameters of the experimental system 

Figure 5. Prototype of the proposed system 
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Since the epipolar line is radial in the omnidirectional stereo image, it is relatively easy to 
match the stereo pair. Recently, many corresponding algorithms for the omnidirectional 
stereo image have been developed (Fiala & Basu, 2005)(Jang et al., 2005)(Zhu, 2001). The 
depth resolution in r z−  plane is depicted in Fig. 7, where each point represents the depth 
computed using the correspondences of all pixels along an epipolar line. 

      
(a) Without concave lens   (b) With concave lens 

Figure 6. Experimental images 

Figure 7. Depth resolution of the proposed system 
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Extension for longer range of sight: 

It is possible to get longer range of sight by using a modified lens. The lens used in Fig. 8 (a) 
has the convex part in its outer side as well as the concave part in the inner side. As 
illustrated in Fig. 8 (a), the convex part and the concave part of the lens introduce the 
refractions in the opposite directions to a pair of light rays, II and III, thereby gives the large 
disparity in the image points. Fig. 8 (b) shows a simulation result for the depth resolution of 
the imaging system, which has the longer range of sight than Fig. 7. 

    
(a)The omnidirectional stereo imaging system 

(b) Depth resolution 

Figure 8. The omnidirectional stereo imaging system with the modified concave lens and the 
corresponding depth resolution 
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5. Conclusion 

Wide field of view is the most attractive feature of the omnidirectional vision. There exist 
two approaches to omnidirectional stereo imaging with a single camera. They use: (1) a 
double lobed mirror (Fiala & Basu, 2005)(Cabral et al., 2004), or (2) two mirrors (Jang et al., 
2005). In this paper, a third approach is described using a mirror and a concave lens. By 
adjusting the position of the concave lens, it is possible to control the disparity between two 
stereo images and the accuracy of the 3D distance computation. Since the optical 
components adopted in the proposed system are commercially available, the proposed 
omnidirectional stereo imaging system is compact and cost-effective. 
Based on the simple optics composed of the reflection and the refraction on the convex 
mirror and the concave lens, an expression for the 3D distance is derived. The proposed 
method is versatile in the sense that it is also applicable to different types of convex mirrors, 
e.g., the parabolic mirror. The second approach (2) mentioned above involves a relatively 
lengthy baseline, and therefore a longer depth range than (1) and the approach proposed in 
this paper. Two simple ways of getting longer range of sight with (1) and the approach in 
this paper are to use a larger mirror or a camera with higher resolution. 
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7. Appendix: Refraction through Concave Lens  

When passing through a concave lens, a light ray experiences the refraction according to the 
surface shape and the refraction index of the lens material. The refraction equations, (1) and 
(2) for θ ′′  and p′′  are derived here in terms of θ  and p  of the light lay. The overall 
refraction through the lens consists of two stages: (1) Free space to lens material and (2) Lens 
material to free space. 

The first stage: In Fig. 9 (a), the followings hold: 
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From Snell’s law, 
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φ  is given by 
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Inserting (14) and (15) into (16) and (17) and applying the first-order optics give 

The second stage: From Snell’s law, the relation between 
2

φ  and 
3

φ  is given as 

3 2
sin sinnφ φ= ⋅ . It is noted here that 

2
φ θ ′=  and 

3
θ φ′′ =  in Fig. 9 (b). Thus, θ ′′  is described 

in terms of θ ′  as 
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In Fig. 9 (b), the followings hold: tan
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equations gives 
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Inserting (18) into (19) and (20) and applying the first-order optics give 
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As a consequence, the distance from the origin of the coordinate system, M to M′′  is given 
as follows: 

1

cp p p

pc n
p d

np p c n

′′ ′′= −

−
= − − ⋅

− +

. (23)

np p c
nc

θ θ
− +′ = ⋅ ,   npc

p
np p c

′ =
− +

(18)

(a) The first stage    (b) The second stage 

Figure 9. Refraction through the concave lens
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1. Introduction 

The aim of cluster analysis is to divide a set of multidimensional observations into subsets 
according to their similarities and dissimilarities. These observations are generally 
represented as data points scattered through an N-dimensional data space, each point 
corresponding to a vector of observed features measured on the objects to be classified. In 
the framework of the statistical approach, many clustering procedures have been proposed, 
based on the analysis of the underlying probability density function (pdf) (Devijver & 
Kittler, 1982). 
Independently from cluster analysis, a large amount of research effort has been devoted to 
image segmentation. To humans, an image is not just an unstructured collection of pixels. 
We generally agree about the different regions constituting an image due to our visual 
grouping capabilities. Among the factors that lead to such perceptual grouping, the most 
important are similarity, proximity and connectedness. The segmentation process can be 
considered as a partitioning scheme such that: 

-Every pixel of the image must belong to a region, 
-The regions must be composed of contiguous pixels, 
-The pixels constituting a region must share a given property of similarity. 

These three conditions can be easily adapted to the clustering process. Indeed, each data 
point must be assigned to a cluster, and the clusters must be composed of neighbouring data 
points since the points assigned to the same cluster must share some properties of similarity.
Considering this analogy between segmentation and clustering, some image segmentation 
procedures based on the gray-level function analysis can be adapted to multidimensional 
density function analysis for pattern classification, assuming there is a one-to-one 
correspondence between the modes of the underlying pdf and the clusters. 
In this framework of unsupervised pattern classification, the underlying pdf is estimated on 
a regular discrete array of sampling points (Cf. section 2). The idea of using a pdf estimation 
for mode seeking is not new (Parzen, 1962) and, in very simple situations, the modes can be 
detected by thresholding the pdf at an appropriate level, using a procedure similar to image 
binarization. A solution for improving this thresholding scheme is to adapt a probalistic 
labelling scheme directly derived from image processing techniques (Cf. section 3). 
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In the clustering context, a mode boundary is similar to a region boundary in an image since 
it is an area where abrupt local changes occur in the pdf. The modes of a distribution of 
multidimensional observations can then be detected by means of generalized gradient 
operators (Cf. section 4). Although these spatial operators enhance substantially the 
discontinuities that delineate the modes, a relaxation labeling process, similar to the one 
used for thresholding, can be necessary for mode boundary extraction. 
Beside procedures based on the concepts of similarity and discontinuity, mathematical 
morphology has proven to be a valuable approach for image segmentation. This theory is 
adapted to cluster analysis by considering the sets of multidimensional observations as 
mathematical discrete binary sets (Cf. section 5). 
Another approach is to consider statistical texture measures to describe the spatial 
distribution of the data points. Similarly to texture segmentation, the approach consists first 
of selecting a set of features that characterize the local distribution of the data points in the 
multidimensional data space in terms of textures. The data points with similar local textures 
are aggregated to define compact connected components of homogeneous textures 
considered as the cores of the clusters (Cf. section 6). 
Modeling spatial relationships between pixels by means of Markov random fields has 
proved to be relevant to the image segmentation problem. The Markovian approach can also 
be adapted to the mode detection problem in cluster analysis (Cf. section 7).  
The algorithms presented in this chapter must be tuned carefully in order to detect the 
significant modes of the distributions (Cf. section 8). The observations falling in these 
detected cluster cores are considered as prototypes so that the remaining data points are 
finally assigned to their respective clusters by means of classical supervised procedures (Cf. 
section 9). 

2. Discretization of the data set 

In order to adapt image processing tools to clustering, it is necessary to introduce a discrete 
array of sampling points. Let us consider Q observations 

T
N,qn,q2,q1,qq ]y,...,y...,,y,y[Y = , q=1 ,2 ,…, Q, where N,qn,q2,q1,q y,...,y...,,y,y  are the 

N coordinates of the observation Yq in the data space. The range of variation of each 
component of the observations is normalized to the interval [0, K], where K is an integer, by 
means of the transformation: 
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normalized data space. Each axis of this space is partitioned into K exclusive and adjacent 
intervals of unit width. This discretization defines an array of KN hypercubes of unit side 
length. The centers of these hypercubes constitute a regular lattice of sampling points 
denoted Pr, K...,,2,1r N= . The unit hypercubic cell centered at point Pr is denoted H(Pr). It 
is defined by its coordinates N,rn,r2,r1,r h...,,h...,,h,h , which are the integer parts of the 
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coordinates of its center Pr. The qth normalized observation Y'
q falls into the unit cell H(Pr) of 

coordinates N...,,2,1n,)y(inth '
n,qn,r == , where )y(int '

n,q  denotes the integer part of the 

real number y'
n,q .

Taking the integer parts of the coordinates of all the available normalized observations 
yields the list of the non-empty cells whose coordinates are defined on the set Z N+ . If several 
observations fall into the same cell, this one appears many times in the list of non-empty 
cells. It is easy to determine the number [ ])P(Hq r  of observations that fall into the 
hypercubic cell of center Pr by counting the number of times the cell H(Pr) appears in that 
list (Postaire & Vasseur, 1982). Subsequently, the distribution of the data points can be 
approximated by the discrete multi-dimensional histogram [ ])P(Hq)P(p̂ rr = . Note that 

Q/)P(p̂ r can be considered as an approximate value of the underlying pdf at point Pr.
The result of this sampling procedure is a multidimensional regular array of discrete 
integers in the range [0, pmax], where pmax is the maximum value of K...,,2,1r,)P(p̂ N

r = ,
that is well conditioned for a multidimensional analysis. Let X denote the set of the centers X 
of the non-empty hypercubic cells defined by this procedure. 

3. Mode detection by relaxation 

In very simple situations, the modes can be detected by thresholding the pdf at an 
appropriate level, using a procedure similar to image binarization. A «mode» label is 
associated with each point where the underlying pdf is above the threshold. Otherwise, the 
corresponding point is assigned a «valley» label. 
However, in practical situations, it is often difficult, or even impossible, to select an 
appropriate threshold to detect the significant modes. A solution for improving this simple 
thresholding scheme is to consider the spatial relationships among the sampling points 
where the underlying pdf is estimated, rather than making a decision at each point 
independently of the decisions at other points. Probabilistic labelling, or relaxation, is a 
formalism through which object labels are iteratively updated according to a compatibility 
measure defined among the neighbouring labels (Hummel & Zucker, 1983). This approach, 
which has been mainly applied to image processing (Rosenfeld & Smith, 1981), has been 
adapted to cluster analysis to reduce local ambiguities in the mode/valley discrimination 
process (Touzani & Postaire, 1988). 
To convey the general idea of the relaxation labelling procedure, which has been applied to 
a variety of image processing problems, we initially assign to each sampling point Pr a 
probability )M(p )0(

r  that it belongs to a mode. The initial probability that Pr belongs to a 

valley is therefore )M(p1)V(p )0(
r

)0(
r −= . These probabilities are then adjusted in parallel on 

the basis of the probability assignments at the neighbouring points of Pr. The process is 
iterated and finally each sampling point Pr is assigned the “mode” or the “valley” label 
according to the resulting probabilities )M(pr  and )V(pr . To be more specific, the initial 

probability )M(p )0(
r  that  Pr belongs to a mode is given by:  
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minmax

minr)0(
r pp

p)P(p̂
)M(p

−
−

= ,

where pmin is the minimum value of the estimated pdf over the whole data space, generally 
equal to 0.  

For each pair of neighbouring sampling points {Pr Pr'}, we define a measure )',(C 'rr λλ of
compatibility between label λ  assigned to point Pr and label 'λ  assigned to point Pr' , where 
λ and 'λ can be either the “mode” or the “valley” labels, such as : 
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and where :
)(pr λ  is the probability associated with label λ  at point Pr
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{ } N
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At the th)1t( + iteration, the new estimate of the probability of label λ at point Pr is updated 
as : 
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)P(V rδ  denotes the hypercubic neighbourhood of point rP , of size 12 +δ  where δ  is an 

integer, consisting of N)12( +δ  neighbouring points, defined as : 

[ ]{ }N,....,2,1i;hxh/x,...,x)P(V i,rii,r
T

N1r =δ+<<δ−=δ

The weighting coefficients )M,(λρ and )V,(λρ must satisfy the condition: 

[ ]
{ }

1)V,()M,(
V,M

=λρ+λρ
∈λ

.

When convergence of the sequence of probabilities )M(p )t(
r is completed, a value of 1 

indicates an unambiguous “mode” label while a value of 0 indicates an unambiguous 
“valley” label. Experiments show that most label probabilities reach these extreme values 
after a few iterations. However, in some cases, the limiting values may be strictly between  0 
and 1 but, due to the drastic reduction of ambiguities, thresholding these probabilities 
becomes trivial. 
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Figure 1 (b) shows a raw estimate of the pdf corresponding to 1000 bidimensional 
observations of figure 1 (a) distributed as three clusters of unequal weights. The 
probabilities at the last step of the relaxation process are displayed in figure 1 (c). This 
example demonstrates the considerable noise cleaning of the relaxation process. 

      
      (a)                (b)           (c) 

Figure 1.  Mode detection by relaxation 

  (a) Scatter diagram of the data set 
 (b) Raw estimate of a bidimensional pdf 
 (c) Label probability diagram at the last iteration of the relaxation process 

4. Mode boundary detection 

4.1 Multidimensional differential operators 

The segmentation of an image can be considered as a problem of edge detection. Similarly, 
in the clustering context, a mode boundary can be defined as an area of abrupt local changes 
in the pdf. It can be detected by means of generalized gradient operators designed to 
perform a discrete spatial differentiation of the estimated pdf (Touzani & Postaire, 1989). 
In an N-dimensional space, the Robert’s operator (Davis, 1975) is generalized by computing 
the 2/)1N(N − elementary gradients defined by : 

)h,....,1h,....,h,....,h(p̂)h,....,h,....,1h,....,h(p̂

h,....,1h,....,1h,....,h(p̂)h,....,h,....,h,....,h(p̂)P(Ĝ

N,r,r,r1,rN,r,r,r1,r

)N,r,r,r1,rN,r,r,r1,rr,

+−++

++−=

βαβα

βαβαβα

where β≠α=β=α ,N,....,2,1,N,....,2,1 .
Thanks to the algorithm used for pdf estimation, which yields the list of the nonempty 
hypercubes, the gradient operator is only applied to non empty regions of the data space, 
thus speeding up the procedure. 
Another way to estimate the gradient of a multidimensional pdf is to generalize the 
Prewitt’s operator by determining the hyperplane that best fits the estimated function 

)P(p̂ r at point rP (Morgenthaler & Rosenfeld, 1981). This hyperplane, defined by: 

=
+≡Π

N

1i
ii0N1 xaa)x,....,x(
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is found by minimizing the squared error : 

N1
2

N1N
)P(V

1rr dx....dx)x,....,x(p̂)x,....,x((E
r

−Π=
δ

Setting the origin at point rP and then differentiating Err with respect to N0 a,....,a and 
setting the result to zero yields the coefficients of the hyperplane. In the discrete case, we 
obtain:
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Analogously to Robert’s operator, Prewitt’s operator is just applied in non empty regions of 
the data space. 
The sampling points that have high gradient values are possible boundary elements. Since 
mode boundaries are closed hypersurfaces, the boundary extraction procedure must be an 
omnidirectional aggregation process. The candidate points lying in the neighbourhood of a 
current boundary point are evaluated on the basis of their satisfying a gradient magnitude 
criterion for acceptance. To be more specific, let )P(Ĝ 0 be the estimated magnitude of the 
gradient at the starting point 0P  and let τ  be a tolerance factor, so that the aggregation 
algorithm incorporates only points with gradient magnitude greater than the threshold 
value )P(Ĝ. 0τ . When the algorithm is successful in finding some boundary elements in the 
neighbourhood of the current point, these elements are added to the currently accepted 
piece of boundary and become available current points for the next stages of the growth 
process. If there are no acceptable candidates in the neighbourhoods of all available current 
points, the aggregation terminates. The aggregation algorithm is then reinitialised from a 
new starting point, which is the point with the highest gradient value among the points that 
do not belong to a reconstructed boundary. 
The boundaries of the three clusters constituting the distribution of bidimensional 
observations of figure 2 (a) are displayed in figure 2 (b). They reflect the modal structure of 
the distribution and can be easily used to assign the data points to their respective clusters.  

    (a)       (b) 
Figure 2.  Mode boundary detection 

 (a) Scatter diagram of a two-dimensional data set 
 (b) Detected mode boundaries 
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These mode boundaries can be used for unsupervised identification of normal mixtures 
(Postaire & Touzani, 1990). 

4.2. Relaxation for boundary detection 

Although these spatial operators enhance substantially the discontinuities that delineate the 
modes, a relaxation labeling process, similar to the one used for thresholding, can be 
necessary for mode boundary extraction (Postaire & Touzani, 1989). 
Figure 3 (b) shows the response of the generalized Prewitt’s operator on the data set of 
figure 3 (a). The result of figure 3 (c) shows how an iterative relaxation scheme can be used 
to enhance the mode boundaries while weakening the effects of noise and irregularities in 
the distribution of the input data.  

(a) (b)

                (c) 

Figure 3.  Mode boundary detection by relaxation 

 (a) Scattered diagram of the data set 
 (b) Response of the generalized Prewitt’s operator 
 (c) Result of 6 iterations of the relaxation process 
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5. Mode detection by morphology 

5.1. Introduction 

Mathematical morphology has been developed as an algebra of set-theoretic operations in 
Euclidean spaces for quantitative description of geometrical structures. As introduced by 
Matheron and Serra (Matheron, 1985) (Serra, 1987), this approach has been mainly 
concerned with binary and graylevel image analysis. Erosions, dilations, openings and 
closings are the simplest transformations derived from mathematical morphology but other 
transformations such as thinnings and thickenings are also widely used. 
These operations can be adapted to cluster analysis by considering the set X of centers X of 
non empty hypercubes, determined from the data by means of the discretization procedure 
described in section 2, in terms of a mathematical set in a Z+N space (Postaire et al., 1993). 
The underlying pdf is then viewed as a closed set in the Euclidean space RZE *N ++ ×= .
The structure of this discrete set X can then be analysed by means of binary morphological 
operations, in order to extract the significative connected components of X, each connected 
component indicating the existence of a cluster in the original data set. Another approach 
consists of detecting the modes of the pdf by means of multivalued morphological 
transformations. 

5.2. Binary morphology 

The binary morphology is based on the comparison between the local structure of the 
discrete set X, and the structure of a pre-specified subset B, called structuring element, 
whose structure depends on the properties that have to be extracted from X.
The dilation of X by a structuring element B is the Minkowski addition of X and B, such  as: 

( ) [ ]B,BXX,BXDZDXBXD N

BB
B

∈∈+=∈==⊕=
∈

.

The set D is found by translating X by all the elements of B and then taking the union. 
Dilation by a small compact structuring element can be used to expand the set X. Dilation of 
X  by B is the set D composed of all those elements D such as  B translated to D intersects X.

The erosion, which is the Minkowsky set subtraction of B from X, is the operation dual to 
dilation with respect to complementation. It is defined by : 

( ) [ ]BBeveryfor,XX,XBEZEXBXE N

BB
B

∈∈=+∈===
∈

The set E is found by translating X by all the elements of B and then taking the intersection.  
It consists of all the elements E for which B translated to E is contained in X. Erosion by a 
compact structuring element B can be viewed as a shrinking transformation of the set X.
In practice, erosion and dilation are seldom used alone. They are often combined in pairs, 
giving two other fundamental morphological operations called openings and closings. 
The opening of X by B, denoted XB

, is the set resulting from the erosion of X by B, followed 

by the dilation of the eroded set by B:

BBXXB ⊕Θ=
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At the completion of this sequence, the opening XB
is generally different from X. The 

opening suppresses irrelevant protuberant details of the set towards its boundary and yields 
a rather simplified version of X.
By duality, the closing of X by B, denoted XB , is the result of first dilating X and then 
eroding the dilated set by B:

BBXXB ⊕Θ=

The closing tends to fill the holes and the gaps in the set X.
The set X of figure 4 (a) is used to demonstrate the effects of these morphological 
transformations on bidimensional data. The opening and the closing of this discrete binary 
set by a (3x3) square structuring element are shown in figures 4 (b) and 4 (c), respectively. 
The results show that these two transformations tend to produce new sets, with simpler 
shapes than the original ones. Opening and closing seem to be very effective to eliminate 
isolated groups of set points and holes, provided theses details do not exceed the size of the 
structuring element. All the irrelevant details are rubbed out, while the actual structure of 
the data remains unchanged.  

                
(a)       (b)  

(c)
Figure 4. Morphological transformations of a binary set 
  (a)  Binary discrete set (* are the centers of the non-empty hypercubes)  
 (b)  Opened set using a compact 3x3 structuring element 
 (c)  Closed set using a compact 3x3 structuring element 
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In order to extract the connected components of X, the cluster detection procedure consists 
of successively applying opening and closing operations, removing irrelevant details in the 
discrete set structure while preserving the global shapes of unsuppressed components. The 
procedure has been applied to the raw data of figure 5 (a). The three cluster cores of figure 5 
(b) have been obtained by a single opening operation followed by a closing operation. 

                  
               (a)      (b) 
Figure 5.  Mode detection by binary morphology 
 (a) Raw bidimensional data set 
 (b) The three modes detected by an opening followed by a closing  

The connected components of X can also be extracted by analysing the connectivity of X by 
means of a valley seeking technique using morphological thinnings (Botte-Lecocq & 
Postaire, 1994). Another solution is to extract the connected components of X by means of its 
ultimate eroded set (Benslimane et al. 1996). 

5.3. Multivalue morphology 

The binary morphological techniques, where only non-empty hypercubes are considered 
independently of the associated pdf value, are very simple to implement and very efficient 
unless the overlapping degree between the different clusters is small. 
Modes can also be viewed as connected components in the space E = Z+N x R+* previously 
defined. If we consider the additive inverse of the pdf, each of its wells corresponds to a 
mode of the pdf, which can be detected by adapting watershed transforms (Meyer & 
Beucher, 1990), usually applied for two-dimensional image segmentation.  

Let )X(f  be this additive inverse such as  )X(p̂)X(f −= . This function is shifted up so that 
its new version: 

( ) ( ) ( ){ } ( ) ( ){ }Xp̂maxXp̂Xp̂minXp̂Xf
XX

* +−=−+−=

becomes positive with its absolute minimum at zero. 
In image segmentation, the most commonly used algorithm for efficient divide 
determination consists of constructing a numerical skeleton by means of homotopic 
thinning transformations of the gray level function (Meyer, 1989). The idea behind this 
thinning process is to deepen the level of the function within the catchment basins so that 
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their bottoms become flat, while leaving unchanged the function along the divides 
separating these basins. 
The thinning of a function consists in a morphological transformation using a composite 
structuring element B composed of two sets of configurations 0B   and 1B . 0B is the subset 

of points of B with a 0 value while 1B  is the subset of the points with a 1 value in this 

composite structuring element. The application of the morphological transformation means 
that the structuring element )B,B(B 01= is moved systematically through the entire 

discretized data space so as to position it at every sampling point. The result of the thinning 
of the function )X(f*  at the current position of the structuring element is given by: 

{ } { } { }
=

≤<=
∈∈∈

else.)X(f)X(g

)'X(finf)X(f)'X(fsupifonlyandif)'X(fsup)X(g

*

*
B'X

**

B'X

*

B'X 100 ,

The interpretation of this morphological operation is clear. Let )B,B()B,B(B
X0X1X01X == be

the structuring element whose origin is shifted to the current position XX ∈  . By this 
translation of B, if for any point X' falling in the part  

X1B of the composite structuring 

element )X(f)'X(f **
≥  , and if for any point X'' falling in the other part 

X0B )X(f)''X(f ** < ,

then )X(f*  is replaced by the supremum of the function inside the part  
X0B of the shifted 

structuring element. Otherwise,  )X(f*   is not modified. 
Thinning transformations are generally used sequentially. A sequential thinning can be 
obtained as a sequence of eight elementary thinnings using the structuring elements 

8...,,2,1i,L )i( =  that are obtained by successive rotations by Π/4 of the composite 

structuring element )1(L  shown in figure 6 (a). A value of one indicates an element that 
belongs to part )1(

1L  of )1(L  , while an element with a zero value belongs to part )1(
0L . The 

particular element denoted 01  is the center of the structuring element. An asterisk  *  in the 

matrix denotes an element belonging neither to )1(
0L  nor to )1(

1L .The transformations using 

this structuring family { })8()1( L,...,L=L  preserve the connectivity properties of the data sets 
since they are homotopic. Hence, the sequential thinning is iterated and converges to the so-
called homotopic skeleton. Idempotence is reached when two consecutive iterations yield 
the same result, and the thinning process is stopped. 
This homotopic sequential thinning is performed with the L family (cf. figure 6 (a)). Each 
structuring element of this family is used to process the 2/)1N.(N −  bi-dimensional 
discrete data sets lying in the planes containing the current point X where the operation is 
carried out and parallel to the planes defined by the axis of the data space taken two by two. 
That means that the thinning at any point X is obtained as a combination of 2/)1N.(N −
elementary planar thinnings operating in orthogonal directions. This procedure circumvents 
the difficulty of finding composite structuring elements in N dimensions that would lead to 
homotopic transformations. As these elementary operations are commutative and 



Scene Reconstruction, Pose Estimation and Tracking 478

associative, they are combined in a single N-dimensional hypercubic composite structuring 
element of size 3. The orthogonal planes, containing the center of this hypercube and 
parallel to the planes defined by the axis taken two by two, have the structure of the 
considered plane structuring element of the L family. All the other elements constituting this 
N-dimensional hypercubic structuring element will be assigned an asterisk, as they are not 
used in the thinning process. 

0 0 0  0 0 0

* 10 *  0 10 * 

1 1 1  0 0 *

                (a)    (b) 

Figure 6.  2-D composite structuring elements from the Golay alphabet (Golay, 1969). 
 (a) The  )1(L   structuring element 
 (b) The  )1(E   structuring element 
 Figure 7 (b) shows the effect of this sequential thinning on the pdf of figure 7 (a) when it is 
iterated until idempotence. 

   
             (a)     (b) 

Figure 7.  Sequential thinning of the shifted additive inverse of a pdf with the L family 
 (a) Shifted additive inverse of a bimodal pdf 
 (b) Result of the last iteration of the thinning process corresponding to idempotence 
Note that the multidimensional skeletons resulting from the sequential thinning operations 
may present non-significant ramifications. They are removed by a pruning operation, 
performed by means of a sequential thinning with another family of structuring elements, 
i.e. the E structuring family, which is not homotopic (cf. figure 6 (b)). When sequentially 
thinning the function with the composite structuring family { }8...,,2,1i,E(i) ==E  , spurious 
divides are shortened from their free ends. If this pruning operation is iterated until 
stabilization of the result, only the true divides remain that are the true boundaries between 
the modes of the distribution. 
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(a) (b)

Figure  8. Mode detection for a bidimensional data set 
 (a) Estimate of the multimodal underlying pdf 
 (b) Detected modal domains 

The final thinned function consists of catchment basins separated by divides of unit width. 
Within a basin, the transformed function has a constant level equal to its local minimum 
value in the basin. The divides are easy to identify in the transformed function, since they 
are neighboured by catchment basins with lower levels. Figure 8 (b) shows the modes 
identified by means of this multidimensional watershed transform in the multidimensional 
pdf of figure 8 (a). 

6. Clustering based on multidimensional texture analysis 

Statistical texture measures can be used to describe the spatial distribution of the data points 
(Hammouche et al., 2006). Similarly to texture segmentation, the approach consists first of 
selecting a set of features that characterize the local distribution of the data points in the 
multidimensional data space in terms of textures. These textures, which reflect the spatial 
arrangement of data points, are then classified on the basis of these features. The data points 
with similar local textures are aggregated in the data space to define compact connected 
components of homogeneous textures. These multidimensional domains of uniform texture 
are finally considered as the modes of the distribution. 
Textural properties are considered in terms of statistical models. The main difficulty is the 
selection of a set of relevant features to describe the properties of the spatial distribution of 
the observations. The concept of co-occurrence matrices, well-known in image processing, 
can be generalized to multidimensional data spaces. A large variety of features can then be 
derived from such matrices that combine spatial information with statistical properties 
(Haralick et al., 1973). 
In the framework of image processing, an element j)T(i,  of a co-occurrence matrix is a 

count of the number of times a pixel T
2,r1,rr ]x,x[P = , with gray-level i , is positioned with 

respect to a pixel T
2,'r1,'r'r ]x,x[P = , with gray level j , such as : 
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θ
θ

+=
sind
cosd

PP r'r

where d  is the distance in the direction θ  between the two pixels. 
A similar co-occurrence matrix can be determined to characterize the local distribution of 
the data points in a given neighbourhood of each non-empty hypercube. We use the 
classical hypercubic neighbourhood of side length )12( +δ  previously defined. As 
directionality and periodicity are obviously irrelevant characteristics of the data point 
distributions, it is not necessary to determine co-occurrence matrices for different sets of 
discrete values of the distance d and the orientation θ between the pairs of sampling points 
taken into account. Hence, only one co-occurrence matrix is determined for each sampling 
point. The co-occurrences j)T(i,  of any given pair (i, j) of discrete multidimensional 
histogram values such as )P(p̂i r= and )P(p̂j 'r= , are simply counted for all the couples of 
adjacent sampling points encountered within this hypercubic neighbourhood. Two 
sampling points are considered as adjacent if they are the centers of two hypercubes that 
have at least one point in common. As the histogram p̂ is quantized on a set 
of 1pmax + discrete values, the co-occurrence matrices have 1pmax + rows and 

1pmax + columns. 
Several local texture features can be computed from these specific co-occurrence matrices, 
which accumulate information on the data distribution in the neighborhood of each 
sampling point (Cf. Table 1). These features are expected to characterize such properties as 
roughness, smoothness, homogeneity, randomness or coarseness rather than textural 
properties such as directionality or periodicity, since each co-occurrence matrix summarizes 
the number of occurrences of pairs of histogram values for all possible pairs of adjacent 
sampling points lying within a given neighbourhood, without constraints on their 
orientations.
When the sampling points are characterized by a set of texture features, they can be 
represented as feature vectors in a multidimensional feature space. Texture classification 
consists of assigning the sampling points of the discrete data space to different texture 
classes defined in the feature space. This is an unsupervised classification problem since no 
a priori knowledge about the feature vectors associated with the textures to be identified is 
available. A simple solution is to use a well-established clustering procedure, such as the k-
means algorithm.  
Under the assumption that the cluster cores are multidimensional domains in the original 
data space, with homogeneous textures, it is expected that the hypercubes centered on 
sampling points assigned to the same class of texture give rise to connected components in 
the discrete data space. These components can be extracted by means of an aggregation 
procedure where two hypercubes whose centers belong to the same class of texture are 
assigned to the same component if they have at least one point in common. Small 
components resulting from this aggregation procedure may correspond to non-significant 
domains of the original data space containing only a small number of data points. Therefore, 
any domain containing less than 5% of the total number Q  of observations is discarded. 
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Table 1. Statistical texture features (
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Among the remaining domains, those corresponding to the actual modes of the distribution 
are expected to be more compact than those corresponding to their boundaries or to the 
valleys between them. Hence, they can be discriminated from other connected components 
by analyzing their compactness defined as: 

C = [total number of hypercubes] / [number of boundary hypercubes]N

which is as much as high as the component is compact. In these conditions, mode detection 
is straightforward by simple thresholding of the compactness. 
Figure 9 (b) shows the modes identified as domains of homogeneous texture detected in the 
data set of figure 9 (a). 
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                (a)                (b) 
Figure 9.  Mode detection by texture analysis 
 (a) Data set 

(b) Detected modes 

7. Markov random field models for clustering 

In the framework of the Markovian approach, each hypercube defined by the discretization 
process of section 2 corresponds to a site s whose coordinates are defined as the integer 
parts of the coordinates of its center. Let S denote the set of KN sites defined in the data 
space. At each site s, K....,,2,1s N= , a measure Os is determined as : 

=
emptyisssitetheif0

ssitetheintofallsnobservatiooneleastatif1
Os

The resulting discrete binary set { }Ss,OO s ∈=  is the observable field which can be 
considered as a simplified binary representation of the distribution of the observations 
through the data space. This observable field O, which is composed of non-empty sites 
where Os = 1 and empty sites where Os = 0,  is considered as an initial state of the hidden 
field Γ . In this initial hidden field, sites where 1s =Γ  are considered as “mode sites”while, 
when 0s =Γ , they are considered as “valley sites”. As the field O is a simplified discrete 
binary version of the set of available observations, non-empty sites that belong to the modes 
tend to have a great number of non-empty sites among their nearest neighbours, due to the 
high concentration of observations within the modes. Similarly, empty sites tend to be more 
connected in the valleys than within the modes. In order to detect the modes of the 
distribution, the key problem is to assign the mode label to the sites that effectively define 
the modal domains and to assign the valley label to those that stand out of these modal 
domains (Sbihi et al., 2005). 

A straightforward procedure for constructing connected subsets representing the modes in 
the data space is to use two sets of cliques (Moussa et al., 2001). For the sake of simplicity, let 
us consider an hypercubic neighbourhood V1(s) of side length 3 of each  site s. The first set 

s
2C  is composed of the cliques s

2c   of size two that can be found in that neighbourhood  and 
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that contain the site s itself (Cf. figure 10 (a)). s
2c

ϕ  is the potential corresponding to these 

cliques. The second set s
2C is composed of all the cliques s

2c  of size two that can be found in 
V1(s) and that do not contain the site s itself (Cf. figure 10 (b)). s

2c
ϕ  is the potential function 

associated to these cliques. The resulting potential function is: 

( ) s
2

s
2

s
2

s
2 ccc,c

)1( ϕυ−+ϕυ=ϕ

The factor  
β+α

α=υ  , where α  is the number of cliques in  s
2C   and  β  their number in s

2C , 

weights the relative influence of the two terms, so that the measure of compatibility does not 
depend on the number of considered sites. 

                  
   (a)                       (b) 

Figure 10. The set of cliques in the bidimensional case 
 (a) The set s

2C  of cliques s
2c  related to the potential function (.)s

2c
ϕ

  (b) The set s
2C  of cliques s

2c  related to the potential function (.)s
2c

ϕ

All the sites are visited sequentially. The conditional energy ( ))sVr,/(U 1rrss ∈γ=Γγ=Γ  is 
computed at each site s , taking into account the label configuration existing at that time for 
all its neighbouring sites. The label corresponding to the lowest conditional energy, which 
maximizes the Gibbs conditional probability: 
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is selected. The process is iterated until no further change occurs in the global energy, 
defined as: 

∈ ∈∈
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2
s
2

s
2

s
2

s
2

s
2

)(U

The algorithm stops when 0UU 1ttt =−=Δ − , where tU is the value of the global energy 
)(U γ=Γ  at iteration number t . 
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Figure 11 shows the modes that can be detected by modelling a bidimensional distribution 
as a Markovian process. 

               
       (a)    (b)         (c) 

Figure 11.  Mode detection by means of Markov Field Model 
(a) Raw data set 
(b) Sites where Os = 1 in the observable field O 
(c) Sites with the “mode” label in the hidden field  Γ

8. Algorithms tunning 

The performance of the above described algorithms depends mainly on the adjustment of 
the discretization parameter K and on the relevance of the chosen texture features. 
Let us first consider the effect of the resolution of the discretization process. In fact, the 
adjustment of K depends on the sample size Q, on the dimensionality N of the data and on 
the structure of the distribution of the observations. It can be expected that, when true 
clusters exist, stable connected subsets of data points with similar properties appear for a 
wide range of values of K. Based on this assumption, the adjustment of  K can be governed 
by the concept of cluster stability (Eigen et al., 1974). Choosing such a parameter in the 
middle of the largest range where the number of detected clusters remains constant, and 
different from one, has proved to be a good procedure to optimize a number of clustering 
algorithms when nothing is a priori known about the structure of the distribution of the 
observations (Postaire & Vasseur, 1981). Note that the larger the range is, the more reliable 
the tuning procedure is. Figure 12 shows the evolution of the number of detected modes 
with the discretization parameter K for the example of figure 9 (a). The largest range where 
this number remains constant appears for three modes. It is the reason why figure 9 (b) 
shows the detected modes in a discrete space with K=22, which is the middle of this range. 
The concept of mode stability is very useful to improve the capabilities of clustering 
procedures. Indeed, in the specific framework of multidimensional texture analysis, the key 
problem is the selection of a set of suitable texture features. For choosing relevant features 
while reducing the dimensionality of the texture classification problem, a performance-
dependent feature selection scheme, directly related to this concept, can be implemented. 
The effectiveness of a subset of features is evaluated by means of the width of the largest 
range of values of the discretization parameter K leading to the appropriate number of 
detected modes. As mentioned earlier, the larger this range, the more reliable the number of 
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detected modes. This criterion is used to select a set of relevant features among the available 
ones by means of a sequential forward selection technique (Siedlecki & Sklansky, 1988). 

Figure 12. Effect of the parameter K on the number of detected modes  

9. Final classification 

Each detected mode reveals the presence of a cluster in the data space. Many grouping 
procedures can be used to assign the available observations to the so-detected clusters. One 
solution uses the input observations falling into the modal domains as prototypes. The 
remaining observations are finally assigned to the clusters attached to their nearest 
(Euclidean) neighbours among these prototypes (Cover & Hart, 1967). 
When implementing this basic nearest neighbour classifier, experiments have shown that 
the results can be fairly improved if the remaining observations are assigned one by one to 
the clusters in a specific order depending on their distances to the prototypes (Gowda & 
Krishna, 1978). At each step of this procedure, we consider the distances between all the 
unassigned observations and all the prototypes. The smallest among these distances 
indicates the specific observation that must be considered. This observation is assigned to 
the cluster attached to its nearest neighbour and is integrated within the set of prototypes 
defining this cluster. This updating rule is iterated until all the observations are classified. 

11. Conclusion and perspectives 

All the clustering methods presented in this chapter tend to generalize bi-dimensional 
procedures initially developed for image processing purpose. Among them, thresholding, 
edge detection, probabilistic relaxation, mathematical morphology, texture analysis, and 
Markov field models appear to be valuable tools with a wide range of applications in the 
field of unsupervised pattern classification. 
Following the same idea of adapting image processing techniques to cluster analysis, one of 
our other objectives is to model spatial relationships between pixels by means of other 
textural parameters derived from autoregressive models (Comer & Delp, 1999), Markov 
random fields models (Cross & Jain, 1983), Gabor filters (Jain & Farrokhnia, 1991), wavelet 
coefficients (Porter & Canagarajah, 1996) and fractal geometry (Keller & Crownover, 1989). 
We have also already started to work on the adaptation of fuzzy morphological operators to 
cluster analysis, by extracting the observations located in the modal regions performing an 
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adaptive morphological transformation of a fuzzy set, defined from the data set, with its 
associated mode membership function (Turpin et al., 1998). Face to these promising results, 
we are working on the introduction of fuzziness in other morphological operators such as 
fuzzy watersheds. Genetic algorithms, which have been used for image segmentation (Yin, 
1999), are also powerfull tools that have to be tested. 
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1. Introduction     

Vision has the great potential to give the computers the ability of collecting information. In 
this chapter we study the tracking and capturing of 3-D free hand motions by computers. 
The hand has no markers and no special devices and no special conditions are required. 
This chapter presents three techniques for the vision-based tracking. The first one is the ICA-
based motion analysis. The second is articulated hand motion tracking by multiple cameras. 
The third is particle filtering with prediction. 
A human hand has many joints and its high dimensionality makes it difficult to model hand 
motions. To make things easier, it is important to represent a hand motion in a low 
dimensional space. Principal component analysis (PCA) has been proposed to reduce the 
dimensionality. However, the PCA basis vectors only represent global features, which are 
not optimal for representing intrinsic features. This chapter proposes an efficient 
representation of hand motions by independent component analysis (ICA). The ICA basis 
vectors represent local features, each of which corresponds to the motion of a particular 
finger. This representation is more efficient in modeling hand motions for tracking and 
recognizing hand-finger gestures in an image sequence. 
This chapter also proposes a new technique to simultaneously estimate the global hand pose 
and the finger articulation imaged by multiple cameras. Tracking a free hand motion against 
a cluttered background is a difficult task. The first reason is that hand fingers are self-
occluding and the second reason is the high dimensionality of the problem. In order to solve 
these difficulties, we propose using calibrated multiple cameras and at the same time 
improving search efficiency by predicted particle filtering. 
The effectiveness of our methods is demonstrated by tracking free hand motions in real 
image sequences. The method is easily expanded for tracking human body motions in 3D. 

2. Related work 

Recently, recognition of hand gestures and hand motion tracking has become an important 
issue in the field of human-computer interaction. Many researchers tried or are trying to 
create a method by camera.  
The hand tracking methods by camera can be divided into two categories. One is 
appearance-based, and the other is model-based.  
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In the appearance-based methods, mapping between image features and hand pose is 
established. Hand pose estimation is formulated as an image database indexing problem, 
where the closest matches for an input hand image are retrieved from a large database of 
synthetic hand images. Stenger et al. proposed a new framework for Bayesian tracking 
based on the tree representation of the large database, which is effective for tracking 3D 
articulated motions in front of cluttered background (Stenger et al., 2003). The problem with 
the appearance-based method is that it requires a very large database. 
In contrast, the model-based methods use an deformable hand model. The hand pose at the 
current frame is estimated from the current image input and previous pose. The problem of 
using a hand model is the high dimensionality. The high dimensionality causes an 
exponentially high computational cost. Particle filtering is one of the most successful object 
tracking algorithms (Isard & Blake, 1998). However, to keep tracking correctness especially 
for rapid motions, it needs a large number of particles. Since it is infeasible to maintain 
dense sampling in high dimensional state spaces, two methods have been proposed to solve 
these problems. One is to reduce the state dimensionality and the other is to improve 
sampling and to make better prediction.  
To reduce the dimensionality, Zhou et al. proposed an eigen dynamic analysis (EDA) 
method and constructed a dynamic Bayesian network based on EDA to analyze the 
generative sequence of natural hand motions (Zhou & Huang, 2003). Wu et al. presented a 
method to capture natural hand motions by PCA and showed tracking results by particle 
filtering (Wu et al., 2001). 
This chapter proposes a new model-based method. The previous researchers (Zhou & 
Huang, 2003) (Wu et al., 2001) have reduced the dimensionality of hand pose space by PCA. 
Then they have learned basis motions in the PCA space. In contrast, we directly reduce the 
dimensionality of hand motion space by PCA. However, at our approach, it is impossible to 
use the PCA basis vectors for particle filtering, since the PCA basis vectors represent global 
features. To solve this problem, we propose to perform ICA to extract local features. 
ICA (Hyvarinen et al., 2001) is a way of finding a linear non-orthogonal coordinate system 
in any multivariate data. The goal is to perform a linear transformation which makes the 
resulting variables as statistically independent from each other as possible. ICA has been 
successfully applied to many applications of image analysis and pattern recognition, such as 
face recognition (Bartlett et al., 2002), sign-language classification, color indexing, 
classification of multi-spectral images, and edge detection. In the proposed ICA-based hand 
motion representation, the ICA basis vectors of hand motions correspond to the motions of a 
particular finger and they are statistically independent. The representation is very efficient 
at particle filtering, since we can directly use these basis vectors. Furthermore, a linear 
combination of these ICA basis vectors can actually represent any hand motions.  
To improve sampling efficiency, Rui et al. propose Unscented Particle Filter (UPF) (Rui & 
Chen, 2001). The UPF uses the unscented Kalman filter to generate sophisticated proposal 
distributions that seamlessly integrate the current observation, thus greatly improving the 
tracking performance. This method needs to establish a system dynamics model. As for our 
26-DOF problem, it is even hard to establish the system dynamics model. Deutscher et al. 
propose annealed particle filtering which is modified for searches in high dimensional state 
spaces (Deutscher et al., 2000). It uses a continuation principle, based on annealing, to 
introduce the influence of narrow peaks in the fitness function, gradually. It is shown to be 
capable of recovering full articulated body motion efficiently. However, the experiment is 
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done against a black background. Bray et al. propose smart particle filtering which combines 
the Stochastic Meta-Descent (SMD), based on gradient descent with particle filtering (Bray et 
al., 2004). Their 3D hand tracking result is robust and accurate. However, they need depth 
maps generated by a structured light 3D sensor, which are not available in real time. 
We propose to add prediction to particle filtering. Parameters in the next frame are 
predicted and more particles are accordingly generated for areas of higher likelihood. The 
method is straightforward but proven to very effective in significantly reducing search cost. 
Another problem with the model-based approach is self-occlusion. While a hand moves 
freely, parts of the hand change from being visible to being invisible, and then becoming 
visible again. Previously proposed techniques avoid this problem by restricting hand 
motions to only those that are frontal to the camera (Wu et al., 2001). To overcome this 
restriction, we propose to use multiple pre-calibrated cameras, so that parts invisible in one 
camera are still visible in at least another camera. While this is the right approach to the self-
occlusion problem, more observations put more burdens on the already busy computer. 
This motivates further improvement of search efficiency. Although Rehg and Kanade (Rehg 
& Kanade, 1995) proposed to use multiple cameras for finger tracking, hand motion in this 
chapter is much more complicated and we need to design and implement more efficient 
method.  

3. Representation of hand motions 

3.1 Hand model 

Figure 1. (a): Hand model with the name of each joint, and the degrees of freedom (DOF) for 
each joint. (b) Hand model rendered in OpenGL. 

In our study a human hand is rendered in OpenGL using spheres, cylinders, and 
rectangular parallelepiped. A human hand can be described in this way: the base is a palm 
and five fingers are attached to the palm. Each finger has four degrees of freedom (DOF). 
Two of four DOF correspond to the metacarpophalangeal joint (MP) and its abduction 
(ABD). The other two correspond to the proximal interphalangeal joint (PIP) and the distal 
interphalangeal joint (DIP) (Lee & Kunii, 1995). It is shown in Fig. 1. Therefore, our hand 
model has 20 DOF. In addition, to represent the position and orientation of a hand, we need 
6 more parameters, 3 for position and 3 for orientation. In total, the hand model has 26 DOF. 
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3.2 Hand motion data 

The data of hand motions is captured by a data glove. It is collected starting from the open-
palmed, 5-fingers extended position, with the fingers moving to various combinations of 
touching the palm. Since a hand consists of five fingers, 31 different hand motions are 
captured as: 

5 5 5 4 5 3 5 2 5 1 31C C C C C+ + + + =   (1) 

where C  means combination. 
Angles of 20 DOF of 15 joints are measured. We divide the motion data of each DOF into 
100 instants along the time axis. Then the motion of each DOF can be represented by a row 
vector of 100-dimensions. We arrange the thumb, index, middle, ring, and pinkie in order, 
where each finger consists of four DOF which are MP, PIP, DIP, and ABD in order as Fig. 2. 
We define this 2000-dimensional row vector as a hand motion vector , 1, ,31i i =x .

Figure 2. Example of a hand motion vector ix . This vector represents the hand motion, 
where an index finger is bended intentionally. The numbers on x-axis refer to time in each 
DOF. The numbers on y-axis refer to angles. 

3.3 Constraints of hand motion 

Analysis of hand motion is a task of high cost, because the joint angle space of hand is 
20Θ ⊂ ℜ . Fortunately, a hand motion has certain constraints. One type of constraints is the 

so-called static constraints in literature (Lee & Kunii, 1995), which define limits on the 

ranges of finger motions such as 0 90MPθ≤ ≤ . These constraints limit hand motions 

within a boundary in 20ℜ . However, these constraints can not be used to reduce the 
dimensionality. 
Another type of constraints describes the correlations among different joints, and we can use 
this type of constraints to reduce the dimensionality of hand motions. For example, the 
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motions of the DIP joint and PIP joint are generally not independent and they can be 

described as 2
3DIP PIPθ θ=  from the study of biomechanics. 

3.4 Dimensionality reduction by PCA 

The purpose of PCA is to find a smaller set of variables with less redundancy. The 
redundancy is measured by correlations between data elements, i.e. 

0( )T
i i= −r P x x   (2) 

where P  is the transformation matrix. Each row of P  corresponds to the first several basis 
vectors, which are calculated from the sample data set using Singular Value Decomposition 

(SVD).
31

0 1

1
31 kk =

=x x  is the mean of  the data set.  

Fig. 3 is the rendered hand motions along the PCA basis vectors. We can see that a hand 
motion along the PCA basis vector represents a global finger motion which means that 
fingers move together. Most of hand motions along the PCA basis vectors are unfeasible 
hand motions. 

Figure 3. Rendered hand motions along the PCA basis vectors from frontal view (view1) 
and tilted view (view2). (a)-(e) corresponds to the first five PCA basis vectors respectively. 



Scene Reconstruction, Pose Estimation and Tracking 494

3.5 Representation of hand motion by ICA 

Although PCA is efficient for dimensionality reduction, it has difficulty representing the 
intrinsic features, because its basis vectors represent global features. In order to solve this 
problem, we use ICA to represent hand motions. First, we perform PCA to reduce the 
dimensionality. Then we perform ICA to extract intrinsic features. ICA is a generalized 
technique of PCA and has proven to be an effective tool of feature extraction. 

Figure 4. Rendered hand motions along the ICA basis vectors from frontal view (view1) and 
tilted view (view2). (a)-(e) corresponds to the five ICA basis vectors respectively. 

A hand motion vector ix  can be represented by a linear combination of basis vectors as 

1 1 2 2

1

N

i ij j i i iN N
j

a a a a
=

= = + + +x u u u u   (3) 

where ju  is the j-th independent basis vector and ija  is the j-th coefficient. Equation (3) can 

then be written as follows in matrix form: 

=X AU   (4) 

where A  is the mixing matrix, producing a matrix X  with hand motion vectors in its row.  
Because we want to obtain U  from sample hand motions X  alone, the problem is actually 
the Blind Source Separation (BSS) problem, which can be solved by ICA as 

ˆ =U WX   (5) 
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The goal of ICA is to find the unmixing matrix W  such that the rows of Û  are as 
statistically independent as possible. Several ICA algorithms have been proposed. Here we 
use the infomax algorithm proposed by Bell and Sejnowski (Bell & Sejnowski, 1995), which 
was successfully used in face recognition (Bartlett et al., 2002). The approach is to maximize 
the joint entropy by using stochastic gradient ascent. The gradient update rule for the 
weight matrix W  is as follow: 

( ( ) )TgΔ = +W I U U W   (6) 

where =U WX  and ( ) 1 2 (1 ).ug u e−= − +
Fig. 4 is the rendered hand motions along the ICA basis vectors.  Compared with PCA basis 
vectors as Fig. 3, a hand motion along the ICA basis vector represents a local finger motion 
which corresponds to a particular finger motion. We can see that only one finger moves 
dominantly, while other fingers move very little. Furthermore, hand motions along the ICA 
basis vectors are feasible hand motions. 

3.6 Efficient representation of hand pose 

The ICA-based model can represent a hand pose by five independent parameters, each of 
which corresponds to a particular finger motion at a particular time instant respectively. 
This is shown in Fig. 5. It can also expressed formally as follows: 

( ) )(

)()()(

54

321

tonPinkieMotitRingMotion
tonMiddleMotitnIndexMotiotnThumbMotioHandPose

++
++=

).(2)(4

)(1)(3)(5

54

321

tICAbasistICAbasis
tICAbasistICAbasistICAbasis

++
++=

  (7) 

Thus, any hand gesture can then be represented by 5 parameters 1 2 3 4 5, , , ,t t t t t .

Figure 5. Each row represents the hand motion along the ICA basis vector. A hand pose is 
determined by five parameters t1-t5 which refer to time. The ICA basis 1 corresponds to a 
middle finger motion, the ICA basis 2 corresponds to a pinkie motion, the ICA basis 3 
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corresponds to an index finger motion, the ICA basis 4 corresponds to a ring finger motion, 
and the ICA basis 5 corresponds to a thumb motion. 

3.7 Justification of the ICA-based hand model 

 When we solve the blind source separation problem, we need to know the number of 
source signals.  To verify the 5-dimension ICA basis is sufficient to represent the finger pose 
and motion, we use “leave-one-out cross-validation”. The result is shown in Fig. 6. In the 
figure, the vertical axis indicates root mean square (RMS) error, and the horizontal axis 
indicates the number of the ICA basis vectors used to recover a hand motion data. The 
average of RMS error is plotted along the vertical axis. The error bars shows maximum error 
and minimum error. 

Figure 6. Leave-one-out cross-validation on the hand motion data set. 
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Figure 7. Five ICA basis vectors. 

The five ICA basis vectors are shown in Fig. 7. ICA can be applied only if the independent 
components are “statistically independent” and also obey “non-gaussian” distribution. 
Here, the independent components are the ICA basis vectors. We calculate the covariance 
matrix of the independent components to verify statistically independent. The covariance 
matrix is 

7.6711 0.1993 0.3399 0.1826 0.162

0.1933 6.5648 0.1007 0.3804 0.3889

0.3399 0.1007 6.2993 0.1464 0.0071

0.1826 0.3804 0.1464 6.1052 0.3711

0.162 0.3889 0.0071 0.3711 4.4959

− −
− −
− −

−
−

  (8) 

The covariance matrix is almost diagonal, which implies the independent components are 
statistically independent. 
In order to measure “non-gaussianity” of the resulting independent components, we 
calculate the kurtosis of each independent component. Since the kurtosis of Gaussian 
distribution is equal to 0, we can measure “non-gaussianity” by calculating the kurtosis. The 
normalized kurtosis (Hyvarinen et al., 2001) is defined as 
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The normalized kurtosis of the independent components is shown in Table 1. Note that the 
normalized kurtosis of Gaussian distribution is equal to 0, that of Laplace distribution is 3, 
and that of exponential distribution is 6. 

 Normalized kurtosis 

ICA basis 1 16.6535 

ICA basis 2 9.7997 

ICA basis 3 13.1544 

ICA basis 4 9.0106 

ICA basis 5 4.3983 

Table 1. Normalized kurtosis of each component. 

4. Hand tracking by particle filtering 

4.1 Particle filtering 

The particle filtering algorithm (Djuric et al., 2003) is a sequential Monte Carlo method. The 
algorithm is powerful in approximating non-Gaussian probability distributions. Particle 
filtering is based on sequential importance sampling and Bayesian theory. With particle 
filtering, continuous distributions are approximated by discrete random sample sets, which 
are composed of weighted particles. The particles represent hypotheses of possible solutions 
and the weights represent likelihood.  
There are three main steps in the algorithm: resampling, diffusion, and observation. The first 
step selects the particles for reproduction. In this step, particles that have heavier weights 
are more likely to be selected. Heavy-weight particles generate new ones, while light-weight 
particles are eliminated. The second step diffuses particles randomly. A part of space that is 
more likely to have a solution has more particles, while a part of space that is less likely to 
have a solution has fewer particles. The third step measures the weight of each particle 
according to an observation density. Fig. 8 shows a pictorial description of particle filtering.  
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Figure 8. One time-step in particle filtering. There are 3 steps, resampling-diffusion-
observation.

4.2 Generating particles 

We implement particle filtering for tracking articulated hand motions. According to the 
Bayes rule, the hand pose of the current frame tx  can be estimated from the prior hand 

pose
1t−x  as 

1( | ) ( | ) ( | )t t t t t tp z p z p z −∝x x x   (10) 

where tz  is the observation of the current frame.  
The important part of particle filtering is to generate particles. In order to represent a 
posteriori ( | )t tp zx , we employ a time-stamped sample set, denoted 

( ){ , 1, , }n
t n N=s , which is weighted by the observation density 
( ) ( )( | )n n
t t t tp zπ = =x s . The weights ( )n

tπ  are normalized so that ( ) 1n
tN

π = . Then 

the sample set ( ) ( ){ , }n n
t tπs  represents the posteriori ( | )t tp zx . The sample set is 

propagated from ( ) ( )

1 1{ , }n n
t tπ− −s  which represents 1 1( | )t tp z− −x . A prior 1( | )t tp z −x  can be 

represented as 

1
1 1 1 1( | ) ( | ) ( | )

t
t t t t t tp z p p z

−
− − − −=

x
x x x x   (11) 

Then random samples are drawn along each ICA basis vector, i.e., 

)|()|(~ 11

)( σ−− = ttt
n

t sNssps   (12) 
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For finger motions, we can make samples along each ICA basis vector shown in Fig. 12 due 
to the efficient representation of hand pose by the ICA-based model. A finger motion is 
determined by five parameters in the ICA-based model which has five dimensions. Other 
parameters are position and rotation. They are presented by translation , ,x y zt t t  and  

Figure 9. Generating hypotheses along each ICA basis vector. Black points indicate current 
sample ts , while white circles indicate hypotheses 1ts + .

rotation , ,x y zr r r . They also propagate as 

)|()|(~ 11

)(

ntranslatiottt
n

t sNssps σ−− =   (13) 

)|()|(~ 11

)(

rotationttt
n

t sNssps σ−− =    (14) 

Then the total dimensionality of ts  is 11, including 5 for finger motion, 3 for translation, and 
3 for rotation. 

5. Occlusion-free tracking by multiple cameras 

5.1 Tracking by multiple cameras 

We perform camera calibration so that the intrinsic parameters and positions and 
orientations of the cameras recovered (Zhang, 1999). Once the cameras are calibrated, a 
hand model is projected onto the images, and the projected images are compared with real 
observations so that the parameters of the hand model can be estimated. Since calibrated 
cameras do not increase unknown parameters, more images do not mean more parameters. 
They merely bring more information. 
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In our currently experiments, we use two cameras looking at the hand, with the two 
cameras separated by roughly 90 degrees. This brings a great improvement over using a 
single camera, and is sufficient in handling occlusions.  

5.2 Relation between the hand model and two cameras 

The relation between two cameras is drawn as follows. The 3D coordinate system centered 
at optical center of camera 1 is X . The 3D coordinate system centered at optical center of  

Figure 10. Relation between two cameras. 

camera 2 is ′X . As depicted in Fig. 10, the rotation matrix and the translation vector from 
the coordinate system of camera 1 to the coordinate system of camera 2 are ,c cR t  . Then 
the relation between the two coordinate systems is given by 

c c′= +X R X t   (15) 

The 3D coordinate system of hand model is mX . The rotation matrix and the translation 
vector from the coordinate system of hand model to the coordinate system of camera 1 are 

,w wR t  . Then the relation between the two coordinate systems is given by 

m w w= +X R X t   (16) 

From (15) and (16), we can transform mX  to X  and ′X , and then project the hand model 
onto the images. 
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5.3 Observation model 

We employ edge and silhouette information to evaluate the hypotheses. For edge 
information, we employ the Chamfer distance function (Stenger et al., 2003). First, we 
perform Canny edge detection to the input image. In the result image of edge detection, the 
edge pixels are black and other pixels are white. Then, at each pixel, we calculate the 
distance from each pixel to the closest edge point by using distance transformation. If the 
distance is over a threshold, the distance is set to the threshold. A distance map of the input 
image is obtained. Fig. 11 (b) shows an example of distance map. Then we project the edge 
of the hand model onto the distance map. We add all distances along the edge points of the 
projected hand model, and calculate the average of distances. Then the likelihood from the 
edge information is 

Figure 11. (a) Input image (b) Distance map of edge observation (c) Extracted silhouette 

Figure 12. Areas of silhouette measurements. Black areas are the corresponding areas. (a) 

I Oa a− , (b) M Oa a− , (c) I Ma a− . Note that Ia  is the silhouette of input image, Ma  is 

the silhouette of hand model, and Oa  is the silhouette of overlap. 
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where averageDist is the average of distances. 
In order to extract the silhouette of a hand region, we convert image color space from RGB 
to HSV (hue, saturation and brightness). Then the skin color region is extracted by using a 
threshold. Fig. 11 (c) shows an extracted silhouette. We calculate subtractions of the area of 
silhouette. The three calculated subtraction results are shown in Fig. 12. The subtractions of 

OI aa − and OM aa −  are used to measure the similarity of the hand position. The 

subtraction of MI aa −  is used to measure the similarity of hand finger pose. Then 
likelihoods from the silhouette information are 

−−∝
2

_

2

_
2

)(
exp)|(

IOsil

OI
ttIOsil

aazp
σ

x   (18) 

−−∝
2

_

2

_
2

)(
exp)|(

MOsil

OM
ttMOsil

aazp
σ

x   (19) 

−−∝
2

_

2

_
2

)(
exp)|(

IMsil

MI
ttIMsil

aazp
σ

x   (20) 

Thus the final likelihood is 

)|()|()|()|()|( ___ ttIMsilttMOsilttIOsilttedgett zpzpzpzpzp xxxxx ∝   (21) 

When we use multiple cameras, the likelihood is 

1

( | ) ( | )
n

t t i t t
i

p z p z
=

∝ ∏x x   (22) 

where n  is the number of cameras. 

5.4 Particle filtering with prediction 

The classical particle filtering requires an impractically large number of particles to follow 
rapid motions and to keep tracking correct. It becomes a serious problem when the tracking 
target has a high dimensional state space like hand tracking. In order to tackle this problem, 
we propose using prediction to generate better proposal distributions.  
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According to the Bayes rule, the hand pose of the current frame tx  can be estimated from 

the prior hand pose 1t−x  as 

1: 1: 1( | ) ( | ) ( | )t t t t t tp z p z p z −∝x x x  (23) 

where

1
1: 1 1 1 1: 1( | ) ( | ) ( | )

t
t t t t t tp z p p z

−
− − − −=

x
x x x x     (24) 

tz  is the observation of the current frame, ( | )t tp z x  is the likelihood distribution and 

1( | )t tp −x x  is the transition probability distribution. (23) can be interpreted as the 
equivalent of the Bayes rule: 

( | ) ( | ) ( )p z p z p∝x x x  (25)  

Figure 13. Five-finger tracking with 50 particles by our method. The projection of OpenGL 
hand model's edge is drawn on the images 

Figure 14. Examples of the corresponding OpenGL hand model of Fig. 13. 
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In particle filtering, the sequence of probability distributions is approximated by a large set 
of particles. Therefore, how to propagate the particles efficiently in areas of higher 
likelihood significantly affects tracking results. The particles are defined as follows: in order 
to represent a posteriori 1:( | )t tp zx , we employ a time-stamped sample set, denoted 

( ){ , 1, , }n
t n N=s . The sample set is weighted by the observation 

density ( ) ( )( | )n n
t t t tp zπ = =x s , where the weights ( )n

tπ  are normalized so that 
( ) 1n
tN

π = . Then the sample set ( ) ( ){ , }n n
t tπs  represents the posteriori 1:( | )t tp zx . The 

sample set of the posteriori is propagated from ( ) ( )

1 1{ , }n n
t tπ− −s  which represents 

1 1: 1( | )t tp z− −x  as shown in Fig. 6. The transition probability distribution 1( | )t tp −x x

affects 1: 1( | )t tp z −x , which in turn affects 1:( | )t tp zx .

1( | )t tp −x x  is modeled by a dynamical model. The simplest dynamical model is 

( ) ( )

1

n n
t t−= +s s B  (26) 

where B  is a multivariate Gaussian distribution with covariance P  and mean 0 .
However, this simple dynamical model does not propagate the particles efficiently and 
many particles are wasted in areas of lower likelihood.  
To overcome these difficulties, we simply use the first-order approximation of Taylor series 
expansion for prediction:  

Figure 15. Demonstration of finger tracking with 200 particles. The projection of OpenGL 
hand model's edge is drawn on images. 

Figure 16. Examples of the corresponding OpenGL hand model of Fig. 15. 
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We also tried to use the second-order approximation of Taylor series expansion 

( ) 2 ( )
( ) ( ) 21 1

1 2

1

2
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−
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∂ ∂
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However, the tracking gets trapped in local minima. The reason is that the second derivative 
cannot be estimated accurately due to noise. 

6. Experimental results 

The proposed algorithm has been tested on real image sequences. We collect training data 
using a data glove. The training data is 31 different hand motions as described in Chapter 4. 
At first, PCA is applied to reduce the dimensionality. Then ICA is applied to obtain the ICA 
basis vectors. We applied our tracking algorithm on real image sequences. In the 
experiment, we assume that the hand model is roughly matched with the hand at the first 
frame. Then our tracking algorithm automatically track hand motions. The hand model is 
manually initialized to fit finger length and palm size. The experimental results demonstrate 
the effectiveness of our method by tracking hand in real image sequences. The video 
sequence is available from http://www.cvg.is.ritsumei.ac.jp/~kmakoto/. 

(a)

(b)

Figure 17. Two image sequences (a) and (b). (a) is taken by the left camera. (b) is taken by 
the right camera. The image sequences include rapid motion, large rotations angle against a 
camera, occlusions and a cluttered background 
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6.1 Tracking local motions by one camera 

We did two experiments by using one camera. In the first experiment, we use 50 particles 
per frame. Fig. 13 shows some frames of video sequence. Fig. 14 shows some corresponding 
hand models. The second experiment includes some local finger motions including rock-
paper-scissors. We use 200 particles per frame. Fig. 15 shows some frames of the video 
sequence and Fig. 16 shows some corresponding OpenGL hand models. 
Experimental results show that the ICA-based model is very useful for articulated hand 
tracking in image sequences since all hand motions can be represented by only 5 parameters 
and each parameter corresponds to a particular finger motion in the ICA-based model. 

6.2 Occlusion-free tracking by multiple cameras 

The tracking by one camera has some limitations. One of the limitations is caused by 
occlusions. The other limitation is caused by extreme changes in rotation angle toward a 
camera. One solution to the problem is tracking by multiple cameras. The following two 
image sequences (Fig. 17) include rapid motion, large rotations angle against a camera, 
occlusions and a cluttered background. 

Figure 18. (a) Tracking result by the right camera only. (b) Tracking result by the left camera 
only.
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At first, we tried the experiment by a single camera to two image sequences respectively, 
shown in Fig. 18 (a) and Fig. 18 (b). In Fig. 18 (a), at frame 50, the hand orientation is slightly 
incorrect and then the error becomes larger, finally, at frame 60, the hand orientation is 
completely incorrect. In Fig. 18 (b), at frame 50, the hand orientation is incorrect and then the 
error becomes larger, finally at frame 60, the tracking estimated that the hand fingers exist at 
the hand wrist position. 
Fig. 19 shows the tracking result by multiple cameras. The experiment was run using 10000 
particles per frame. The tracking correctly estimated hand position and motion throughout 
the sequence.
From the results, we can see that occlusion is a severe problem for tracking by a single 
camera but is not a problem for multiple cameras. 

Figure 19. Tracking result by two cameras. (a) Camera 1 view. (b) Camera 2 view.  
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The projection of hand model's edge is drawn on the images by red lines. The CG models 
are examples of some corresponding hand models

6.3 Tracking with prediction 

In this experiment, we compared the methods with prediction and without prediction. Fig. 
20 (a) is the result without prediction and Fig. 20 (b) is that with prediction. In Fig 20 (a), at 
frame 50, the hand orientation is slightly incorrect, and then the error becomes larger and 
finally, at frame 60, the tracking estimated that the hand is upside down comparing with the 
real hand. While with the prediction, we can avoid such kind of error (Fig. 20 (b)). 

Figure 20. (a) Tracking result without prediction. (b) Tracking result with prediction. 
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Figure 21. Trajectory of the rotation around Y axis (unit: degrees). 

6.4 The number of particles 

We also did experiments with different numbers of particles per frame in order to find out 
how many particles are suitable for the tracking. We show the trajectory of the rotation 
around Y axis in Fig. 21. 
We did the experiment with 500 particles, 3000 particles, 10000 particles and 15000 particles. 
The results have dramatic change when we increase the number of particles from 500 to 
10000. And the results only have slight change when we increase the number of particles 
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from 10000 to 15000. Therefore, 10000 is the optimized number of particles for this hand 
motion. 

7. Conclusion 

In this chapter, we proposed three new approaches, the ICA-based hand model, articulated 
hand motion tracking by multiple cameras, and Particle filtering with prediction. 
The ICA-based hand model is the ICA-based representation of hand articulation for tracking 
hand-finger gestures in image sequences. The dimensionality of the hand motion space is 
reduced by PCA and then ICA is applied to extract the local feature vectors. In the ICA-
based model, each of the first five basis vectors corresponds to a particular finger motion, 
because the joints in each finger have stronger dependencies than the joints across different 
fingers. In the ICA-based model, hand poses can be represented by five parameters with 
each parameter corresponding to a particular finger motion. We implemented articulated 
hand motion tracking by particle filter using this ICA-based hand model. Experimental 
results show that the ICA-based model is very useful for articulated hand tracking in image 
sequences. 
Next approach is an articulated hand motion tracking by multiple cameras. This method is 
useful for gesture recognition. Tracking a free hand motion against a cluttered background 
was unachievable in previous methods because hand fingers are self-occluding. To improve 
search efficiency, we proposed adding prediction to particle filtering so that more particles 
are generated in areas of higher likelihood. The experimental results show that our method 
can correctly and efficiently track the hand motion throughout the image sequences even if 
hand motion has large rotation against a camera. 
The methods in this chapter are easily extended to many other visual motion capturing 
tasks. 
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1. Introduction   

When the human eye searches a natural scene, the left and right eyes converge on an 
interesting area by action of the brain and the eyeballs. This mechanism is based on two 
attention processes. In a top-down (or volitional) processing, the human visual system 
determines salient locations through perceptive processing such as understanding and 
recognition. On the other hand, with bottom-up (or image-based) processing, the human 
visual system determines salient locations obtained from features that are based on the basic 
information of an input image such as intensity, color, and orientation. Bottom-up 
processing is a function of primitive selective attention in the human vision system since 
humans selectively attend to a salient area according to various stimuli in the input scene 
(Itti et al., 1998). If we can apply the human-like vergence function considered human 
attention process to an active stereo vision system, an efficient and intelligent vision system 
can be developed. Researchers have been developing the vergence stereo system. It was 
known that the two major sensory drives for vergence and accommodation are disparity 
and blur (Krishnan & Stark, 1977; Hung & Semmlow, 1980). Krotkov organized the stereo 
system through waking up the camera, gross focusing, orienting the cameras, and obtaining 
depth information (Krotkov, 1987). Abbott and Ahuja proposed surface reconstruction by 
dynamic integration of the focus, camera vergence and stereo disparity (Abbott & Ahuja, 
1988). These approaches give good results for a specific condition, but it is difficult to use 
these systems in real environment because the region extraction based on intensity 
information is very sensitive to luminance change. For mimicking a human vision system, 
Yamato implemented a layered control system for stereo vision head with vergence control 
function. This system utilized a search of the most similar region based on the sum of 
absolute difference (SAD) for tracking. The vergence module utilized a minimum SAD 
search for each pixel to obtain figure-ground separation in 3D space (Yamato, 1999). But 
these systems may not give good results when the camera is moving with background 
because the SAD contains much noise by moving the camera. Jian Peng et al. made that an 
active vision system enables the selective capture of information for a specific colored object 
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(Peng et al., 2000). But this system only considered the color information for the selective 
attention. Thus, the developed active vision only operates for a specific color object and the 
luminance change deteriorate performance of the system. Bernardino and Victor 
implemented vergence control stereo system using log-polar images (Bernardino & Santos-
Victor, 1996). This work considers only the intensity information. Batista et al. made a 
vergence control stereo system using retinal optical flow disparity and target depth velocity 
(Batista et al., 2000). But this system mainly converges on the moving object because of 
optical flow. Thus, this system only considered the motion information of retina and do not 
consider intensity, edge and symmetry as retina operation. Moreover, these all approaches 
take a lot of computation load to get the vergence control.  Therefore, we need a new 
method not only to sufficiently reflect information of images such as color, intensity and 
edge but also to reduce the computation load during vergence control. Conradt et al. 
proposed a stereo vision system using a biologically inspired saliency map (SM) (Conradt et 
al., 2002). They detected landmarks in both images with interaction between the feature 
detectors and the SM, and obtained their direction and distance. They considered intensity, 
color, and circles of different radius, and horizontal, vertical and diagonal edges as features. 
However, they do not consider the occlusion problem. Also their proposed model does not 
fully consider the operation of the brain visual signal processing mechanism because they 
only considered the roles of neurons in the hippocampus responding to mainly depth 
information. On the other hand, the selective attention mechanism allows the human vision 
system to process visual scenes more effectively with a higher level of complexity. The 
human visual system sequentially interprets not only a static monocular scene but also a 
stereo scene based on the selective attention mechanism. In previous research, Itti and Koch 
(Itti et al., 1998) introduced a brain-like model in order to generate the saliency map (SM). 
Koike and Saiki (Koike & Saiki, 2002) proposed that a stochastic WTA enables the saliency-
based search model to vary the relative saliency in order to change search efficiency, due to 
stochastic shifts of attention. Timor and Brady (Kadir & Brady, 2001) proposed an attention 
model integrating saliency, scale selection and a content description, thus contrasting many 
other approaches. Ramström and Christensen (Ramstrom & Christensen, 2002) calculated 
saliency with respect to a given task by using a multi-scale pyramid and multiple cues. Their 
saliency computations were based on game theory concepts. In recent work, Itti’s group 
proposed a new attention model that considers seven dynamic features for MTV-style video 
clips (Carmi & Itti, 2006) and also proposed an integrated attention scheme to detect an 
object, which combined bottom-up SM with top-down attention based on signal-to-noise 
ratio (Navalpakkam & Itti, 2006). Also, Walter and Koch proposed an object preferable 
attention scheme which considers the bottom-up SM results as biased weights for top-down 
object perception (Walther et al., 2005). Also, Lee et al. have been proposed a bottom-up SM 
model using symmetry information with an ICA filter (Park et al., 2002) and implemented a 
human-like vergence control system based on a selective attention model, in which the 
proposed model reflects a human’s interest in an area by reinforcement and inhibition 
training mechanisms (Choi et al., 2006). Ouerhani and Hugli proposed a saliency map 
model considering depth information as a feature (Ouerhani and Hugli, 2000). They insisted 
that little attention has been devoted so far to scene depth as source for visual attention and 
also pointed that this is considered as a weakness of the previously proposed attention 
models because depth or 3D vision is an intrinsic component of biological vision (Ouerhani 
and Hugli, 2000). Ouerhani and Hugli just used range finder for getting depth information 
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but did not consider any mechanism about how to deal with binocular vision process. None 
of the proposed attention models, however, consider the integration of a stereo type bottom-
up SM model and a top-down selective attention scheme reflecting human’s preference and 
refusal. In this paper, we propose a new human-like vergence control method for an active 
stereo vision system based on stereo visual selective attention model. The proposed system 
reflects the single eye alignment mechanism during an infant’s development for binocular 
fixation, and also uses a selective attention model to localize an interesting area in each 
camera. The proposed method reflects the biological stereo visual signal processing 
mechanism from the retinal operation to the visual cortex. Thus, we use a new selective 
attention model for implementing a human-like vergence control system based on a 
selective attention mechanism not only with truly bottom-up process but also with low-level 
top-down attention to skip an unwanted area and/or to pay attention to a desired area for 
reflecting human’s preference and refusal mechanism in subsequent visual search process 
such as the pulvinar. Moreover, the proposed selective attention model considers depth 
information to construct a final attention area so that the closer attention area can be easily 
pop-up as our binocular eyes. Using the left and right saliency maps generated by the 
proposed selective attention models for two input images from left and right cameras, the 
selected object area in the master camera is compared with that in the slave camera to 
identify whether the two cameras find a same landmark. If the left and right cameras 
successfully find a same landmark, the implemented active vision system with two cameras 
focuses on the landmark. To prevent it from being a repetitively attended region in the 
vision system, the converged region is masked by an inhibition of return (IOR) function. 
Then the vision system continuously searches a new converged region by the above 
procedure. The practical purpose of the proposed system is to get depth information for 
efficient robot vision by considering focusing on an interesting object only by training 
process. Moreover, the proposed method can give a way to solve the occlusion problem. The 
depth information of the developed system will operate for avoiding an obstacle in a robotic 
system. Based on the proposed algorithm together with an effort to reduce the computation 
load, we implemented a human-like active stereo vision system. Computer simulation and 
experimental results show that the proposed vergence control method is very effective in 
implementing the human-like active stereo vision system. In Section 2, we briefly discuss 
the biological background of the proposed model and the proposed stereo visual selective 
attention model. In Section 3, we explain the landmark selection algorithm in each camera, 
the verification of the landmarks and depth estimation using eye gaze matching. In Section 
4, we explain the hardware setup and describe computer simulation and the experimental 
results. The discussion and conclusion will be followed in Section 5.  

2. Stereo visual selective attention  

2.1 Biological understanding  

Fig. 1 shows the biological visual pathway from the retina to the visual cortex through the 
LGN for the bottom-up processing, which is extended to the extrastriate cortex and the 
prefrontal cortex for the top-down processing. In order to implement a human-like visual 
attention function, we consider the bottom-up saliency map (SM) model and top-down 
trainable attention model. In our approach, we reflect the functions of the retina cells, LGN 
and visual cortex for the bottom-up processing, and dorsolateral prefrontal, posterior 
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parietal cortex, the anterior cingulated gyrus, and the pulvinar nucleus of the thalamus for 
the top-down processing (Goldstein, 1995).  

Figure 1. Biological visual pathway of bottom-up and top-down processing  

Fig. 2 shows the proposed stereo saliency map model in conjunction with vergence control 
process based on the simulated biological visual pathway from the retina to the visual cortex 
through the LGN for the bottom-up processing, which is extended to the limbic system 
including the pulvinar for the top-down processing. In order to implement a human-like 
visual attention function, three processes are integrated to generate a stereo SM. One 
generates static saliency in terms of monocular vision. Another considers low-level top-
down process for reflecting human preference and refusal, which mimics the function of the 
pulvinar in the limbic system. Finally, we can build stereo SM based on two monocular SMs 
and depth in terms of binocular vision.  

2.2 Static bottom-up saliency map  

Based on the Treisman’s feature integration theory (Treisman & Gelde, 1980), Itti and Koch 
used three basis feature maps: intensity, orientation and color information (Itti et al., 1998). 
Extending Itti and Koch’s SM model, we previously proposed SM models which include a 
symmetry feature map based on the generalized symmetry transformation (GST) algorithm  
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Figure 2. Stereo saliency map model including the static bottom-up SM process,  the low-
level top-down preference and refusal process and depth perception  

and an independent component analysis (ICA) filter to integrate the feature information 
(Park et al., 2002; Park et al., 2000). In this paper, we investigate through intensive computer 
experiment how much the proposed symmetry feature map and the ICA filter are important 
in constructing an object preferable attention model. Also, we newly incorporate the neural 
network approach of Fukushima (Fukushima, 2005) to construct the symmetry feature map, 
which is more biologically plausible and takes less computation than the GST algorithm 
(Park et al., 2000). Symmetrical information is also important feature to determine the salient 
object, which is related with the function of LGN and primary visual cortex (Li, 2001). 
Symmetry information is very important in the context free search problem (Reisfeld et al., 
1995).In order to implement an object preferable attention model, we emphasize using a 
symmetry feature map because an object with arbitrary shape contains symmetry 
information, and our visual pathway also includes a specific function to detect a shape in an 
object (Fukushima, 2005; Werblin & Roska, 2004). In order to consider symmetry 
information in our SM model, we modified Fukushima’s neural network to describe a 
symmetry axis (Fukushima, 2005). Fig. 3 shows the static bottom-up saliency map model. In 
the course of computing the orientation feature map, we use 6 different scale images (a 
Gaussian pyramid) and implement the on-center and off-surround functions using the 
center surround and difference with normalization (CSD & N) (Itti et al., 1998; Park et al., 
2002). As shown in Fig. 4, the orientation information in three successive scale images is 
used for obtaining the symmetry axis from Fukushima’s neural network (Fukushima, 2005). 
By applying the CSD&N to the symmetry axes extracted in four different scales, we can 
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obtain a symmetry feature map. This procedure mimics the higher-order analysis 
mechanism of complex cells and hyper-complex cells in the posterior visual cortex area,  

Figure 3. Static bottom-up saliency map model (I: intensity feature, E: edge feature, RG: red-
green opponent coding feature, BY: blue-yellow opponent coding feature, LGN: lateral 
geniculate nucleus, CSD&N: center-surround difference and normalization, I : intensity 
feature map, O : orientation feature map, S : symmetry feature map, C : color feature map, 
ICA: independent component analysis)  

Figure 4. Symmetry feature map generation process 

beyond the orientation-selective simple cells in the V1. Using CSD&N in Gaussian 
pyramidimages (Itti et al., 1998), we can construct the intensity ( I ), color ( C ), and 
orientation ( O )feature maps as well as the symmetry feature map ( S ). Based on both 
Barlow’s hypothesis that human visual cortical feature detectors might be the 
end result of a redundancy reduction process (Barlow & Tolhust, 1992)and Sejnowski’s 
results that ICA is the best way to reduce redundancy (Bell & Sejnowski, 1997), the four  
constructed feature maps (I, C, O, and S) are then integrated by an independent 
componentanalysis (ICA) algorithm based on maximization of entropy (Bell & Sejnowski, 
1997). Fig. 5 shows the procedure for computing the SM. In Fig. 5, S(x,y) is obtained by 
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summation of the convolution between the r-th channel of input image(Ir) and the i-th 
filters(ICsri) obtained by the ICA learning [9]. A static SM is obtained by Eq. (1).  

 S (x, y) = Ir* ICs ri                
for all  I   (1) 

Since we obtained the independent filters by ICA learning, the convolution result shown in 
Eq. (1) can be regarded as a measure for the relative amount of visual information. The 
lateral-intra parietal cortex (LIP) plays a role in providing a retinotopic spatio-feature map 
that is used to control the spatial focus of attention and fixation, which is able to integrate 
feature information in its spatial map (Lanyon & Denham, 2004). As an integrator of spatial 
and feature information, the LIP provides the inhibition of return (IOR) mechanism required 
here to prevent the scan path returning to previously inspected sites (Lanyon & Denham, 
2004).

Figure 5. Saliency map generation process using ICA filter  

2.3 Low-level top-down selective attention  

Although the proposed bottom-up static SM model generates plausible salient areas and a 
scan path, the selected areas may not be an interesting area for human because the SM only 
uses primitive features such as intensity, color, orientation and symmetry information. In 
order to implement a more plausible selective attention model, we need to consider low-
level top-down mechanism that can reflect human preference and refusal for visual features. 
Human beings ignore uninteresting areas, even if they have primitive salient features, and 
they can memorize the characteristics of the unwanted area. Humans do not pay attention to 
new areas that have characteristics similar to learned unwanted areas. In addition, human 
perception can focus on an interesting area, even if it does not have primitive salient 
features, or if it is less salient than the other areas. We propose a new selective attention 
model that mimics the human-like selective attention mechanism and that can consider not 
only primitive input features, but also interactive properties with humans in the 
environment. Moreover, the human brain can learn and memorize many new things 
without catastrophic forgetting. It is well known that a fuzzy adaptive resonance theory 
(ART) network can easily be trained for additional input pattern. Also, it can solve the 
stability-plasticity dilemma in a conventional multi-layer neural network (Carpenter et al., 
1992). Therefore, as shown in Fig. 6, we use a fuzzy ART network together with a bottom-up 
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SM model to implement a selective attention model with preference and refusal process that 
can interact with a human supervisor. During the training process, the fuzzy ART network 
“learns” and “memorizes”the characteristics of uninteresting and/or interesting areas 
decided by a human supervisor. After the successful training of the fuzzy ART network, an 
unwanted salient area isinhibited and a desired area is reinforced by the vigilance value of
the fuzzy ART network, as shown in Fig. 6. As shown in Fig. 6, corresponding four feature 
maps from the attended area obtained fromthe SM are normalized and then represented as 
one dimensional array X that are composedof every pixel value a

i
of the four feature maps 

and each complement a
i

c computed by1 a
i
, which are used as an input pattern of the fuzzy 

ART model. Then, the fuzzy ART model consecutively follows three processes such as a 
choice process, a match process and an adaptation process.  

where is a learning rate. When Eq. (3) is satisfied, we call resonance is occurred. However, 
if the similarity is less than the vigilance, the current winning F2-node is removed from the 
competition by a reset signal. The fuzzy ART searches again a node with the next most 
similar weight vector with the input pattern X before an uncommitted prototype is chosen. 
If none of the committed nodes matches the input pattern well enough, search will end with 
the recruitment of an uncommitted prototype (Frank et al., 1998).  
As the number of training patterns increases, however, the fuzzy ART network requires 
more time to reinforce or inhibit some selected areas. For faster analysis in finding an 
inhibition and/or reinforcement area, we employed the hierarchical structure of this 
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network. Fig. 7 shows the modified hierarchical structure model of the fuzzy ART. The 
hierarchy of this network consists of a five-layer concatenated structure, in which each layer 
represents a different hierarchical abstract level of information. The highest level of the 
model stores the most abstract information that represents a highly abstract cluster. The 
lowest level of the model stores more detailed information. The input of the higher level in 
the model is generated by dimension reduction of the input of the lower level by averaging 
operator. For example, if the dimension of input for the lowest level is 32 by 32, the 
dimension of the next higher level becomes 16 by 16. The input pattern comparison with the 
memorized patterns of the model starts from the highest level, then the proposed model 
progress to the lower level according to the resonance result at the fuzzy ART module for 
the level. In the highest level, the input dimension is so small that it takes short time to 
finish the process of the fuzzy ART module. If the current input pattern has no resonance in 
the highest level, the hierarchical model can finish the process without considering the other 
lower levels, through which it can reduce the computation time. After the training process 
of the model is successfully finished, it memorizes the characteristics of the unwanted or 
desired areas in order to reflect human’s preference and refusal. If a salient area selected by 
the bottom-up SM model of a test image has similar characteristics to the fuzzy ART 
memory, it is ignored by inhibiting that area in the SM or it is magnified by reinforcing that 
area in the SM according to human interest.  

Figure 6. The architecture of the proposed low level top-down attention model with 
reinforcement(preference) and inhibition(refusal) property: ( I : intensity feature map, O :
orientation feature map, S : symmetry feature map, C : color feature map, SM: saliency  

map). Square block 1 in the SM is an interesting area, but block 2 is an uninteresting area  
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Figure 7. The modified hierarchical fuzzy ART network, where <a> represents the lowest 
level in fuzzy ART network and <e> does the highest level one  

2.4 Stereo saliency  

In this paper, we now utilize the depth information obtained by the vergence control vision 
system to construct the stereo saliency map model, which can then support pop-up for 
closer objects. In our model, the selective attention regions in each camera are obtained from 
static bottom-up saliency in conjunction with the low-level top-down preference and refusal, 
which are then used for selecting a dominant landmark. After successfully localizing 
corresponding landmarks on both the left image and the right image, we are able to get 
depth information by a simple triangular equation described in Section 3. Then, the 
proposed stereo SM model uses depth information as a characteristic feature in deciding 
saliency using a decaying exponential function. The final stereo SM is obtained by 
S(x,y)·exp

z/

, where z is the distance between the camera and an attend region, and is a time 
constant.

3. Vergence control using the stereo selective attention model  

3.1 Selection and verification of landmarks  

During an infant’s development, binocular disparity by binocular fixation is decomposed 
into three different mechanisms; alignment of eyes, convergence and sensory binocularity 
(Thorn et al., 1994). According to this fact, the single eye alignment should be the first factor 
considered regarding convergence that needs binocular fixation. In order to accomplish the 
single eye alignment, we use successive attention regions selected by the selective attention 
model in each camera image. Most of the stereo vision systems fix one of two cameras in the 
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master eye. Humans, however, will probably not perform single eye alignment in this 
manner. The eye that has the dominant landmark may be considered the master eye, and the 
other eye is the slave eye that aligns itself to the landmark of the master eye. In our model, 
the trainable selective attention model generates the maximum salient value for the 
dominant landmark in each camera image. Comparing the maximum salient values in two 
camera images, we can adaptively decide the master eye that has a camera with a larger 
salient value. As shown in Fig. 2, the selective attention regions in each camera are obtained 
by the low-level top-down SM model for reflecting human’s preference and refusal in 
conjunction with the bottom-up static SM model, which are used for selecting a dominant 
landmark. The low-level preference and resual SM model can reinforce an interesting object 
area in the bottom-up saliency map, which makes the interesting object area to be the most 
salient region even if it is less salient than another area in the bottom-up saliency map. 
Moreover it can inhibit an unwanted object area in the bottom-up saliency map, which 
makes the unwanted object area to be the least salient region even if it is more salient than 
another area in the bottom-up SM model. Therefore, the proposed attention model can have 
an ability to pay an attention to an interesting object area by the low-level top-down 
attention process together with the bottom-up SM model. Although the position of a salient 
region in the left and right cameras is almost the same, there exists a misalignment case due 
to occlusion and the luminance effect. In order to avoid this situation, we compare the 
difference of y coordinates between a dominant salient region in the master eye and 
successive salient regions in the slave eye because one of the successive salient regions in the 
slave eye may be in accordance with the salient region of the master eye. When the 
difference of the y coordinates is smaller than the threshold, we regard the salient region as 
a candidate for a landmark. In order to verify the candidate as a landmark, we need to 
compare the salient region of the master eye with that of the slave eye. The regions obtained 
by the IOR function, which is to avoid duplicating the selection of the most salient region, 
are compared in order to decide on a landmark. If the IOR region of the master eye is similar 
to that of the slave eye, we regard the IOR regions as a landmark to make convergence. The 
comparison of values of the IOR regions between the left and right cameras is used for the 
verification of a landmark.  

3.2 Depth estimation and vergence control  

After the landmark is successfully selected, we are able to get depth information. Fig. 8 
shows the top view of verged cameras. First, we have to obtain the degrees of two camera 
angles to be moved to make a focus on a land mark. Considering the limitation of the field 
of view (F) in the horizontal axis and motor encoder resolution (U), we can get the total 
encoder value (E) to represent the limited field of view of the horizontal axis. The total 
encoder value (E) can be obtained by Eq. (5). As shown in Eq. (6), the total encoder value (E) 
is used to calculate the encoder value (xt) of the horizontal axis motor for aligning of each 
camera to a landmark. In Eq. (6), R denotes the x-axis pixel resolution of the image and T 
denotes the relative pixel coordinate of the x-axis of a landmark from the focus position. In 
other words, T represents the disparity of x- axis. The x- axis encoder value (xt) that uses to 
move each camera to the landmark point is translated into the angel (xd) by Eq. (7). As a 
result, the angles a and b are obtained by Eq. (7) by substituting T for the x coordinates of 
the left and right cameras. Obtained depth information is used to generate a stereo SM. 
Finally, the proposed model decides the most salient area based on the obtained stereo SM 



Scene Reconstruction, Pose Estimation and Tracking 524

and makes two cameras to focus on the same area by controlling motors of them, which is 
called vergence control.  

L: Left camera focus center, R : Right camera focus center, a : Right camera angle, b : Left 
camera angle, c : an intercept of  the line 1, s : The distance between the two cameras focus, 1 
and 2 : straight line from right and left cameras to a landmark 

Figure 8. Top view of verged cameras  

Eqs. (8) and (9) show the equation of straight lines between the cameras and the landmark, 
respectively. In Eq. (8), x and y denote the disparities for x-axis and y-axis respectively 
between a land mark and a current focus position and s represents the distance between 
each focal axis of two cameras.  Eq. (10) is the equation to calculate the vertical distance (y) 
in Fig. 8.  
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Figure 9. Three cases of obtaining the depth information  

4. Implementation & Experimental results  

4.1 Hardware implementation  

We implemented a stereo vision robot unit for vergence control of two cameras. Fig. 10 
shows the implemented system called by SMART-v1.0 (Self Motivated Artificial Robot with 
a Trainable selective attention model version 1.0). The SMART-v1.0 has four DOF and two 
1394 CCD camera and Text to Speech module (TTS) to communicate with humans to inquire 
about an interesting object, and tilt sensor to set offset position before starting moving. We 
use the Atmega128 as the motor controller and zigbee to transmit motor command from a 
PC to SMART-v1.0. The SMART-v1.0 can search an interesting region by the selective 
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4.2 Experimental results  

4.2.1 Static saliency  

Fig. 11 shows an example in which the proposed bottom-up SM model generates more 
object preferable attention by using symmetry information as an additional input feature 
and ICA for feature integration. The numbers in Fig. 11 represent the order of the scan path 
according to the degree of saliency. As shown in Fig. 11, the symmetry feature map is 
effective in choosing an attention area containing an object. The ICA filter successfully 
reduces redundant information in feature maps so that the final scan path does not pay 
attention to sky in the input image. Table 1 compares the object preferable performance of 
three different bottom-up SM models using hundreds of test images. The bottom-up SM 
model considering both the symmetry feature and ICA method for integrating features 
shows the best object preferable attention without any consideration of top-down attention.  
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4.2.2 Low-level top-down selective attention  

Fig. 12 shows the simulation results using the low-level top-down saliency component of 
our proposed model. Fig. 12 (a) shows the scan path generated by the static SM model, 
where the 3rd salient area is deemed a refusal area according to the human’s preference and 
refusal, and it is trained by the low-level top-down SM model for refusal. Also, the 2nd

salient area is changed after training the low-level SM model for preference. The bottom 
image shows the modified saliency map by reflecting human’s preference and refusal 
during training process. Fig. 12 (b) shows the modified scan path by the preference and 
refusal low-level top-down attention process after training human’s preference and refusal 
as shown in Fig. 12 (a). Fig. 13 shows an example for lip preferable attention, and Table 2 
shows the performance comparison between the bottom-up SM model and the low-level 

Table 2. Low-level top-down attention performance 
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4.2.3 Stereo saliency and vergence control  

Fig. 14 shows a simulation result using stereo saliency. As shown in Fig. 14, by considering 
the depth feature, the proposed model can make closer attened objects mostly pop out.  

Fig. 14. Stereo saliency and vergence control experimental results

5. Conclusion  

We proposed a new biologically motivated vergence control method of an active stereo 
vision system that mimics human-like stereo visual selective attention. We used a trainable 
selective attention model that can decide an interesting area by the low-level top-down 
mechanism implemented by Fuzzy ART training model in conjunction with the bottom-up 
static SM model. In the system, we proposed a landmark selection method using the low-
level top-down trainable selective attention model and the IOR regions. Also, a depth 
estimation method was applied for reflecting stereo saliency. Based on the proposed 
algorithm, we implemented a human-like active stereo vision system. From the computer 
simulation and experimental results, we showed the effectiveness of the proposed vergence 
control method based on the stereo SM model.  The practical purpose of the proposed 
system is to get depth information for robot vision with a small computation load by only 
considering an interesting object but by considering all the area of input image. Depth 
information of the developed system will operate for avoiding an obstacle in a robotic 
system. Also, we are considering a look-up table method to reduce the computation load of 
the saliency map for real-time application. In addition, as a further work, we are now 
developing an artificial agent system by tracking a moving person as main practical 
application of the proposed system.  

6. Acknowledgment 

This research was funded by the Brain Neuroinformatics Research Program of the Ministry 
of Commerce, Industry and Energy, and the sabbatical year supporting program of 
Kyungpook National University.  



Biologically Motivated Vergence Control System Based on Stereo Saliency Map Model 529

7. References  

Abbott, A. L. & Ahuja, N. (1988). Surface reconstruction by dynamic integration of focus, 
camera vergence, and stereo, Proceedings of IEEE International Conference on 
Computer Vision, pp.532 -543, ISBN: 0-8186-0883-8  

Barlow, H. B. & Tolhust, D. J. (1992). Why do you have edge detectors?, Optical society of 
America Technical Digest, Vol. 23. 172, ISBN-10: 3540244212, ISBN-13: 978-
3540244219

Batista, J.; Peixoto, P. & Araujo, H. (2000). A focusing-by-vergence system controlled by 
retinal motion disparity, Proceedings of IEEE International Conference on Robotics 
and Automation, Vol. 4, pp.3209 -3214, ISBN: 0-7803-5889-9, April 2000, 
SanFrancisco, USA  

Bell, A. J. & Sejnowski, T. J. (1997). The independent components of natural scenes are edge 
filters, Vision Research, Vol. 37., 3327-3338, ISSN: 0042-6989  

Bernardino, A. & Santos-Victor, J. (1996). Vergence control for robotic heads using log-polar 
images, Proceedings of IEEE/RSJ International Conference. Intelligent Robots and 
Systems, Vol. 3, pp.1264 -1271, ISBN: 0-7803-3213-X, Nov. 1996,  Osaka, Japan  

Carpenter, G. A.; Grossberg, S.; Markuzon, N. J.; Reynolds, H. & Rosen, D. B. (1992). Fuzzy 
ARTMAP: A neural network architecture for incremental supervised learning of 
analog multidimensional maps, IEEE Trans. on Neural Networks, Vol. 3, No.5, 698-
713, ISSN: 1045-9227  

Carmi, R. & Itti, L. (2006). Visual causes versus correlates of attentional selection in dynamic 
scenes, Vision Research, Vol. 46, No.26, 4333-4345, ISSN: 0042-6989  

Choi, S. B.; Jung, B. S.; Ban, S. W.; Niitsuma, H. & Lee, M. (2006). Biologically motivated 
vergence control system using human-like selective attention model, 
Neurocomputing, Vol. 69,  537-558, ISSN: 0925-2312  

Conradt, J.; Pescatore, M.; Pascal, S. & Verschure, P. (2002). Saliency maps operating on 
stereo images detect landmarks and their distance, Proceedings of International 
Conference on Neural Networks, LNCS 2415, pp.795-800, ISBN-10: 3540440747,  
ISBN 13: 978-3540440741, Aug. 2002 , Madrid, Spain   

Frank, T.; Kraiss, K. F. & Kuklen, T. (1998). Comparative analysis of Fuzzy ART and ART-2A 
network clustering performance. IEEE Trans. Neural Networks, Vol. 9, No. 3, May 
1998, 544-559, ISSN: 1045-9227  

Fukushima, K. (2005). Use of non-uniform spatial blur for image comparison: symmetry axis 
extraction, Neural Network, Vol. 18, 23-22, ISSN: 0893-6080  

Goldstein, E. B. (1995). Sensation and perception, 4th edn., An international Thomson 
publishing company, ISBN-10: 0534539645, ISBN-13: 978-0534539641, USA  

Hung, G. K. & Semmlow, J. L. (1980). Static behavior of accommodation and vergence: 
computer simulation of an interactive dual-feedback system, IEEE Trans. Biomed. 
Eng., Vol. 27, 439-447, ISSN: 0018-9294  

Itti, L.; Koch, C. & Niebur, E. (1998). A model of saliency-based visual attention for rapid 
scene analysis, IEEE Trans. Patt. Anal. Mach. Intell., Vol. 20,  No. 11., 1254-1259, 
ISSN: 0162-8828  

Kadir, T. & Brady, M. (2001). Scale, saliency and image description, International Journal of 
Computer Vision, 83 -105, ISSN: 0920-5691 Koike, T. & Saiki, J. (2002) Stochastic 
guided search model for search asymmetries in visual search tasks, Lecture Notes 
in Computer Science, Vol. 2525, 408-417, ISSN: 0302-9743  



Scene Reconstruction, Pose Estimation and Tracking 530

Krishnan,V. V. &  Stark,L. A. (1977). A heuristic model of the human vergence eye 
movement system, IEEE Trans. Biomed. Eng., Vol. 24 , 44-48, ISSN: 0018-9294  

Krotkov, E. (1987). Exploratory visual sensing for determining spatial layout with an agile 
stereo camera system, University of Pennsylvania Ph.D. Dissertation also available 
as a Tech. Rep, MS-CIS-87-29   

Lanyon, L. J. & Denham, S.L. (2004). A model of active visual search with object-based 
attention guiding scan paths, Neural Networks Special Issue: Vision & Brain, Vol. 
17, No. 5-6, 873-897, ISSN: 0893-6080  

Li, Z. (2001). Computational design and nonlinear dynamics of a recurrent network model 
of the primary visual cortex, Neural Computation, Vol.13, No.8, 1749-1780, ISSN: 
0899-7667

Navalpakkam, V. & Itti, L. (2006). An integrated model of top-down and bottom-up 
attention for optimal object detection, Proceedings of IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), pp.2049-2056, ISBN: 0-7695-
2597-0

Ouerhani, N. & Hugli, H. (2000). Computing visual attention from scene depth, Proceedings 
of 15th International Conference on Pattern Recognition, Vol. 1, pp. 375-378, ISBN: 
07695-0750-6, Oct. 2000, Barcelona, Spain   

Park, C. J.; Oh, W. G. S.; Cho, H. & Choi, H. M. (2000). An efficient context-free attention 
operator for BLU inspection of LCD production line, Proceedings of IASTED 
International conference on SIP, pp. 251-256  

Park, S. J.; An, K. H. & Lee, M. (2002). Saliency map model with adaptive masking based on 
independent component analysis, Neurocomputing, Vol. 49, 417-422, ISSN: 0925-
2312

Peng, J.; Srikaew, A.; Wilkes, M.; Kawamura, K. & Peters, A. (2000). An active vision system 
for mobile robots, Proceedings of IEEE International Conference. Systems, Man, 
and Cybernetics, Vol. 2, pp. 1472 – 1477, ISBN: 0-7803-6583-6, Oct. 2000, Nashville, 
TN, USA  

Ramstrom, O. & Christensen, H. I. (2002). Visual attention using game theory, Lecture Notes 
in Computer Science, Vol. 2525, 462-471, ISSN: 0302-9743  

Reisfeld, D.; Wolfson, H. & Yeshurun, Y. (1995). Context-free attentional operators : The 
generalized symmetry transform, Internatioanl Jouranl of Computer Vision, Vol. 
14, 119-130, ISSN: 0920-5691  

Thorn, F.; Gwiazda, J.; Cruz, A. A. V.; Bauer, J. A. & Held, R. (1994). The development of eye 
alignment, convergence, and sensory binocularity in young infants, Investigative 
Ophthalmology and Visual Science, Vol. 35, 544-553, Online ISSN: 1552-5783, Print 
ISSN: 0146-0404  

Treisman, A. M. & Gelde, G. (1980). A feature-integration theory of attention, Cognitive 
Psychology, Vol. 12, No. 1, 97-136, ISSN: 0010-0285  

Walther, D.; Rutishauser, U.; Koch, C. & Perona, P. (2005). Selective visual attention enables 
learning and recognition of multiple objects in cluttered scenes, Computer Vision 
and Image Processing, Vol. 100, No.1-2, 41-63, ISSN: 1077-3142  

Werblin, F.S. & Roska, B. (2004). Parallel visual processing: A tutorial of retinal function, Int.   
                J. Bifurcation and Chaos, Vol. 14, 83-852, ISSN: 0218-1274  
Yamato, J. (1999). A layered control system for stereo vision head with vergence, Proceedings of 

IEEE International Conference on Systems, Man, and Cybernetics, Vol. 2, pp. 836 -841, 
ISBN: 0-7803-5731-0, Oct. 1999, Tokyo, Japan  


